


## SDG-7









he biggest challenge in modern society is to achieve 'Net Zero Emission' and to stop global warming duet to Green House Gas (GHG) Emissions. The tremendous exploitation of non-renewable resources like fossil fuels is causing irrecoverable harm to nature by emitting all sorts of air pollutants and GHGs. The result is continuous increase of global average temperature, ice sheet melting, abrupt climatic consequences. One stop solution is to switch to alternative clean and green energy sources like Solar, Wind, Water etc. but not very easy with various economic, geologic and infrastructure reasons. However, society must continuously thrive to alternative energy resources through its technological advancement. UN SDG 7 promotes 'Affordable and Clean Energy' ensuring access to affordable, reliable, sustainable and modern energy. DIT University is in line with SDG 7 in making buildings with efficient energy rating appliances, using solar power at maximum usage, minimizing energy wastage and promoting new developments in green energy through research and collaboration activities.



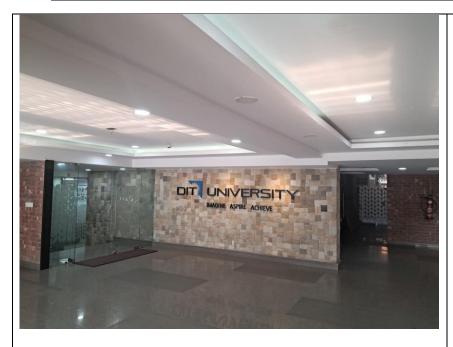
## **CONTENTS**

| S. No | Topics                                    | Page No.             |
|-------|-------------------------------------------|----------------------|
| 1.    | Preface                                   |                      |
| 2.    | Energy Efficiency Plan                    | 2                    |
| 3.    | Use of Sensor based Electrical Appliances | 3                    |
| 4.    | Energy Audit Report                       | <u>View Document</u> |



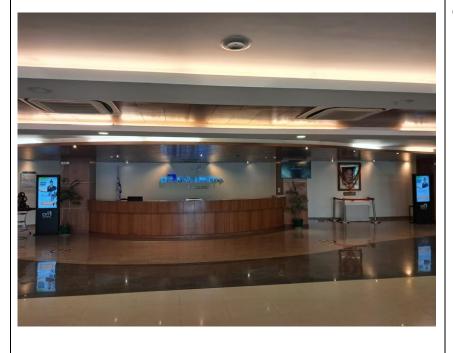
## University Plan for Energy Efficiency, Energy Management and Energy Review

DIT University has an energy efficiency plan in place to actively reduce overall energy consumption across our campus. Our plan encompasses a range of strategies and initiatives aimed at optimizing energy use and minimizing our environmental impact. Key elements of our energy efficiency plan include:


- Energy Audits
- Energy-Efficient Technologies
- Behavioral Awareness Programs
- Sustainable Construction and Upgrades
- Regular Maintenance

Our comprehensive approach to energy efficiency, including educational and research components, aligns with our commitment to sustainability and environmental stewardship, reflecting our dedication to reducing overall energy consumption.

University conducts energy audit from 3<sup>rd</sup> party frequently and the suggested plans in the audit reports are discussed in statutory bodies for implementation.

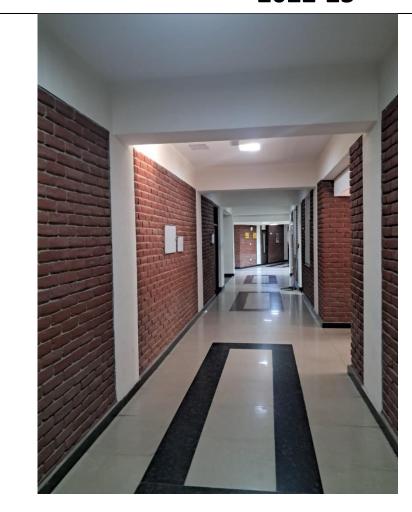



#### Sensor-based energy conservation & Use of LED bulbs/ power efficient equipment



Sensor-based energy conservation

- Fitment of light sensors
- Light sensors have been installed in the campus
- Manufacturer-Philips (Legrand)




Use of LED bulbs/ power efficient equipment

- Use of Led Bulbs / Power Efficient Equipment's
- Manufacturer Wipro Lighting
- Total Lighting Load294.40 Kw
- Total LED Lighting Load 270.53 Kw

Percentage of LED / Total Lighting Load - 91.90%







### **ENERGY AUDIT REPORT**

For additional reference, please find the Energy Audit Report – <u>View Document</u>





## **MANDATORY ENERGY AUDIT**

# **DIT UNIVERSITY**



JUNE - 2022

Village-Makkawala, Mussoorie Diversion Road
Dehradun-248009 (U.K)

### **CONDUCTED BY:**



## A-Z ENERGY ENGINEERS PVT. LTD.

PLOT NO. 12, 4860-62, HARBANS SINGH STREET, KOTHI NO. 24, WARD NO. II, DARYA GANJ, NEW DELHI-11002

© 011-23240541, 9811402040 
pp\_mittal@yahoo.com

### **Contents**

| Chapte           | er-1 Introduction                                | 10  |
|------------------|--------------------------------------------------|-----|
| 1.1.             | The Project                                      | 10  |
| 1.2.             | Scope of Work                                    | 10  |
| 1.3.             | Object of study                                  | 11  |
| 1.4.             | Methodology                                      | 11  |
| 1.5.             | Instrumentation Support                          | 12  |
| Chapte           | er-2 Base Line Data                              | 13  |
| 2.1.             | General Details                                  | 13  |
| Chapte           | er-3 Present Energy Scenario                     | 14  |
| 3.1.             | Purchased Power                                  | 14  |
| 3.2.             | Reactive Power Compensation                      | 14  |
| 3.3.             | Self-generated Power                             | 14  |
| 3.4.             | Solar PV                                         | 14  |
| 3.5.             | Purchased Power Consumption Pattern              | 16  |
| 3.5.1.           | Apr 2021- Mar 2022                               | 16  |
| 3.6.             | Summary                                          | 21  |
| Chapte           | er-4 Transformer Load Profile                    | 22  |
| 4.1.             | Rated specification of transformer               | 22  |
| 4.2.             | Loading on Main Incomer                          | 22  |
| 4.2.1.           | Load Profile of Transformer- 1000 KVA            | 22  |
| 4.3.             | Graphical Load Profile Of Transformer            | 24  |
| 4.3.1.           | Graphical Load profile of LT Panel Transformer-1 | 24  |
| 4.4.             | Efficiency of Transformer                        | 29  |
| 4.5.             | Other Feeder Loads                               | 30  |
| Chapte           | er-5 Reactive Power Compensation                 | 33  |
| 5.1.             | Capacitor Bank Installed                         | 33  |
| 5.2.             | Capacitor Bank                                   | 33  |
| 5.3.             | Recommendations                                  | 33  |
| 5.3.1.           | Improvement in the Operating Power Factor        | 33  |
| 5.3.2.           | Actual P.F from Electricity bill                 | 34  |
| 5.3.3.           | Advantages of Power Factor Improvement           | 35  |
| 5.3.4.           | Cost benefits of Power Factor Improvement        | 35  |
| •                | er-6 Power Quality                               | 36  |
| 6.1.             | Power Quality & Harmonics                        |     |
| 6.2.             | Observations & Suggestions:                      |     |
| 6.3.             | Major Causes of Harmonics                        | 38  |
| Chapte           | er-7 Lighting Systems                            | 40  |
| 7.1.             | Lighting                                         | 40  |
| 7.1.1.           | Systems Installed                                |     |
| 7.1.2.           | Types of Lighting fitting Fixtures               |     |
| 7.1.3.           | Time based control or Daylight linked control    |     |
| 7.1.4.           | Localized Switching                              |     |
| 7.1.5.<br>7.1.6. | llumination & Lux level                          |     |
| 7.1.0.           | LAIX LEVEL MEASUREMENTS                          | 4/. |

| 7.1.7. | Assessment of lighting system                                           | 43 |
|--------|-------------------------------------------------------------------------|----|
| 7.1.8. | Common and Recommended Light Levels Indoor                              |    |
| 7.2.   | Recommendations                                                         | 45 |
| 7.2.1. | Optimization of the Main Incomer Voltage on Main Panel                  | 45 |
| Chapte | r-8 D.G Sets                                                            | 46 |
| 8.1.   | D.G. Rated Specifications                                               |    |
| 8.2.   | Performance assessment of d. g                                          |    |
| 8.3.   | Observation and recommendations                                         | 46 |
| 8.4.   | general recommendations for energy measured in dg sets                  | 47 |
| Chapte | r-9 Solar Photovoltaic cell                                             | 48 |
| 9.1.   | Installation of Solar Photovoltaic Cell (SPV)                           | 48 |
| 9.2.   | Unit Generation By Solar PV                                             |    |
| 9.3.   | Observation and recommendations                                         | 49 |
| Chapte | r-10 Thermography                                                       | 50 |
| 10.1.  | Thermal Imagine                                                         | 50 |
| 10.2.  | Summary of Scanned Equipment                                            | 50 |
| 10.3.  | General Recommendations and Comments                                    | 51 |
| Chapte | -18 Other Possible Areas for Energy Savings                             | 52 |
| 18.1.  | Day Light Harvesting                                                    | 52 |
| 18.2.  | Timed Based Control or Daylight Linked Control                          | 53 |
| 18.3.  | Localized Switching                                                     | 53 |
| Chapte | -19 General Tips for Energy Conservation in Different Utilities Systems | 54 |
| 19.1.  | Electricity                                                             | 54 |
| 19.2.  | Motors                                                                  | 54 |
| 19.3.  | Drives                                                                  | 54 |
| 19.4.  | Fans 54                                                                 |    |
| 19.5.  | Blowers                                                                 | 55 |
| 19.6.  | Pumps                                                                   | 55 |
| 19.7.  | Lighting                                                                | 55 |
| 19.8.  | DG sets                                                                 | 55 |
| 19.9.  | Buildings                                                               | 56 |
| 19.10. | Water & Wastewater                                                      |    |
| 19.11. | Miscellaneous                                                           | 57 |

### **ABBREVIATIONS**

| А      | Ampere                   |
|--------|--------------------------|
| AC     | Alternating Current      |
| Avg.   | Average                  |
| CFL    | Compact Fluorescent Lamp |
| CFM    | Cubic feet minute        |
| DTL    | Double Tube Light        |
| DG     | Diesel Generator         |
| FAD    | Free Air Delivery        |
| FTL    | Florescent Tube Light    |
| GT     | Generator Transformer    |
| DTL    | Double Tube Light        |
| KL     | Kilo Liter               |
| KV     | Kilo Volt                |
| kVA    | Kilo Volt Ampere         |
| kW     | Kilo Watts               |
| kWh    | Kilo Watt Hour           |
| LED    | Light Emitting Diode     |
| Lit    | Liters                   |
| M or m | Meter                    |
| Max.   | Maximum                  |
| Min.   | Minimum                  |
| MT     | Metric Ton               |
| MW     | Mega Watt                |
| No.    | Number                   |
| PF     | Power Factor             |
| STL    | Single Tube Light        |
| TR     | Ton of Refrigerant       |
| V      | Voltage                  |

#### Acknowledgement

M/s. A-Z Energy Engineers Pvt. Ltd., expresses sincere thanks to the Management of "DIT University," for their kind assistance and co-operation for carrying out the Energy Audit of their DIT University, Dehradun (H.R). The site visits for the Energy Audit have been conducted from June. 2022.

The Management is highly conscious about its Energy Efficiency Levels and they have initiated several measures to reduce the energy consumption, which include amongst others the use of LED lights, Star Rated AC, Solar Pv, Solar water & APFC Panel etc. **A-Z Energy Engineers Pvt. Ltd., acknowledges and appreciates the commitment of the management towards conservation of Energy.** 

The Audit team of A-Z Energy Engineers Pvt. Ltd. conveys their gratitude and thanks to the management of DIT University, for their positive attitude in safety, reliability and energy conservation program through energy efficiency improvement and better utilization of available energy system infrastructures followed by their proactive role in conducting the energy audit study.

The Audit team would like to register their hearty thanks to DIT University, Dehradun for their guidance, coordination, active support, participation during the audit and motivating the audit team.

#### Official from DIT University, Dehradun

□ Mr. Alok Saxena – Site Incharge

□ Mr. Dinesh Singh - Electrical M.No. 9927067044

#### Audit Team Members

□ Dr. P.P. Mittal- Accredited Energy Auditor-AEA-0011

□ Mr. I.C Mittal - Certified Energy Auditor-CEA-21615

Mr. Pankaj Chauhan – Sr. Engineer

□ Mr. Alok Kumar Tiwari– Engineer

(Dr. P.P Mittal)
Accredited Energy Auditor- AEA-0011

M.No. 8449669966

#### Highlights of the Energy Audit

M/s. A-Z Energy Engineers Pvt. Ltd. expresses sincere thanks to the Management of "DIT University, Dehradun" for their kind assistance and co-operation for carrying out the Energy Audit of their University. The site visits for the Energy Audit have been conducted from June, 2022.

The Broad Scope of work and Key Systems/ Equipment's covered during the Energy Audit was as follows:

- Review of Electricity Bills, Contract Demand and Power Factor: for the last one
  year in which possibility will be explored for further reduction of contract
  demand an improvement of P.F.
- Electrical System Network: which would include detailed study of all the
  transformers of various rating / capacities their operational pattern, loading, no
  load losses, power factor measurement on the main power distribution boards
  and scope for improvement if any. the study would also cover possible
  improvement in energy metering systems for better control and monitoring
- Study of Motors Pumps Loading Study of motors above 10 KW in terms of measurement of Voltage (V), Current (I), Power (kW) and P.F. and thereby suggesting measure for energy saving like reduction in size of motors or installation of energy saving device in the existing motors. Study of Pumps and their flow, thereby suggesting measures for energy saving like reduction in size of Motors and Pumps of installation of energy saving device in the existing motors, optimization of pumps.
- Chiller & Cooling tower: Performance shall be evaluated as regards; their input power vis-à-vis TR capacity and performance will be compared to improve to the best in the category.
- **Lighting System:** Study of type and fitting of lighting and suggest measures for improvements and energy conservation opportunity wherever feasible.

- **RO System:** Study of type and fitting of R.O and suggest measures for improvements and energy conservation opportunity wherever feasible.
- **UPS System:** Performance shall be evaluated of UPS System, improvements and energy conservation opportunity wherever feasible.

#### **Key Points**

- The Detailed Energy Audit of DIT University, Dehradun was carried out from June, 2022 to find out the energy saving potential and the performance level of DIT University The report provides the major highlights on potential energy saving opportunities available in the University.
- DIT University, Dehradun draws power from the Uttarakhand power Corporation Limited, at 11 kV; subsequently the voltage is stepped down by one transformer 11 KV to 0.433 KV by 1000 KVA transformer. The Contract demand of plant is 824 KVA. Billing is done on 11 KV.
- During the site visit, measurements were made to record the load profile of the building, which included the variations in the voltage, current, power factor, harmonics etc. Analysis of the recordings indicated that the average voltage level was around 244 Volts. This may be an adequate voltage for motive loads like motors etc, but for the lighting systems normally, the voltage should be around 220 volts (phase to neutral). A reduction of around 15% in the lighting voltage can reduce the power consumption by around 20%.

As the conventional light is replacing with LED lamps in phase manner, the effect of voltage reduction in terms of power saving will be almost negligible. However, reduction and stabilization of voltage will improve the life of lamps. Light saver transformer is already installed in plat used for control light load voltage.

The plant is being billed on KVAh basis; therefore, the effect of power factor is inbuilt in the billing structure. There is one capacitor bank panel (420 kVAr,) is installed in the substation at LT Side. The building is being billed on KVAh basis; During the Year, the operating power factor varied from 0.922 to 1.00. However, if we look at the overall average power factor is around 0.993, which is good. The effect of power factor is inbuilt in the billing structure so to be improves power factor is 0.999

APFC Panel or the capacitor banks wherein the delivery is poor (less than 70%) or out of order may be replaced, so that the overall system power factor is maintained at around 0.99 (lag). Improvement in the power factor would subsequently reduce the KVAh consumption, the resultant benefits in terms of energy savings. Most of the capacitor is de-rated & not in operation. The details of measurement in given Capacitor chapter.

- The measured efficiency of transformer-1000KVA is 97.44, which is good.
- ⇒ The harmonics levels measured in main incomer. The details is given below table.

| Particulars     | TR-1000 KVA)<br>(Average) |
|-----------------|---------------------------|
| THD Phase 1 (V) | 1.5                       |
| THD Phase2 (V)  | 1.6                       |
| THD Phase3 (V)  | 1.6                       |
| THD Phase 1 (A) | 7.4                       |
| THD Phase2 (A)  | 7.8                       |
| THD Phase3 (A)  | 7.2                       |

The average voltage harmonics levels were around below 1.5 to 1.6%, which is under limit. The current harmonics levels were around below 7.2 to 7.8% for Transformer, which is under limit.

■ The Building Management is highly conscious about its Energy Efficiency and
cost and has initiated several measures to reduce the energy consumption,
which include replacement of conventional lamps with LEDs

- ◆ Although there is no simpler way to reduce the amount of energy consumed by lighting system than to manually turn OFF whenever not needed, this is not done as often as it could be. In response, automatic lighting control strategies like installation of occupancy sensors can be considered to Control light in response to the presence or absence of people in the space. Quantification of energy savings on this account is not possible.
- During the audit we measured the specific fuel consumption (kWh/Ltr) of DG sets. The load profile of the electrical parameters was recorded by using a portable 3-phase power analyzer. The analysis of the different parameters recorded at the L.T incoming main supply and during this period the diesel consumption was also recorded empty tank method. The standard specific fuel consumption (SFC) of DG sets is in the range of 3.0 to 4.0 kWh/ltr and present SFC of DG-1 & 2 is 3.0 to 3.3 kWh/Ltr, which is good.
- ⇒ The Management is highly conscious about its Energy Efficiency Levels and they
  have initiated several measures to reduce the energy consumption, which include
  amongst others the use of LED lights, Star Rated AC, Renewable solar energy &
  Energy monitoring etc. A-Z Energy Engineers Pvt. Ltd., acknowledges and
  appreciates the commitment of the management towards conservation of Energy.

#### **CHAPTER-1 INTRODUCTION**

#### 1.1. THE PROJECT

With the advent of energy crisis and exponential hikes in the costs of different forms of energy, Energy Audit is manifesting its due importance in every establishment. Energy Audit helps to understand more about the way's energy is used in any establishment and helps in identifying areas where waste may occur and scope for improvement exists.

It was with this objective that "M/s. A-Z Energy Engineers Pvt. Ltd., Plot No.12, 4860-62, Harbans Singh Street, Kothi No. 24, Ward No. II, Darya Ganj, New Delhi-11002, was entrusted with the job of conducting Energy Audit of "DIT University, Dehradun".

#### 1.2. SCOPE OF WORK

The Broad Scope of work was to:

#### 1. Analysis of the Electricity bills

- (i) Analysis of the different section of the electricity bills.
- (ii) Study of the fixed charges and variable charges and comments on the same.
- (iii) Calculation of the load actor.
- (iv) Comments on the contract demand and suggestions to reduced them

#### 2. Power factor and Harmonics Analysis

- (i) Measured of power factor/ harmonics analysis at the major loads.
- (ii) Suggesting methods to improve the present power factor.
- (iii) Suggesting method for improving power quality and reduction of Harmonics if any.

#### 3. Metering and Monitoring Status

- (i) Review of exiting metering system of the plant
- (ii) Suggesting need and methods to improve the metering system, if required.

#### 4. Transformers

- (i) Study of major transformer in the plant.
- (ii) Measuring of loading pattern and current efficiency of the transformer.
- (iii) Data shall be collected using portable power analyzer and energy meter installed in plants.
- (iv) Snapshot study for similar equipment.

#### 5. Water Pumps

Study of water pumps (15 KW and above) would be carried out:-

- (i) Measured of flow and head using plant instruments if available.
- (ii) Measured of power consumption.
- (iii) Checking running hours of the pumps and optimization of the same.

- (iv) Recommend measure to reduce the power consumption.
- (v) Application of flow control methods.
- (vi) Application of retrofit for energy savings.

#### 6. Lighting System

Detailed audit in lighting system normally results in considerable saving. illumine readings with lux meter should act as a basis for comparative purpose. The study should cover measurement of lux level at works place and at various points of light usage. Application of retrofits such as: -

- (i) Timer Control
- (ii) Photocell control for street lighting
- (iii) Use of energy efficient lighting

#### 7. DG Sets

- (i) Specific electricity generation ratio evaluation (based on the data).
- (ii) Performance evaluation i.e., Energy balance efficiency calculations (based on the data).

#### 1.3. OBJECT OF STUDY

The purpose of this study is to demonstrate the technical and financial feasibility of implementation of energy efficiency measures in M/s. DIT University, Dehradun. The purpose of this report is: –

- (i) to analyze the present energy consumption pattern
- (ii) to investigate for energy conservation measures without compromising the production level
- (iii) to assess the techno-economic feasibility of the energy conservation measure

#### 1.4. METHODOLOGY

Methodology adopted for achieving the desired objectives viz: Assessment of the Current operational status and Energy savings include the following:

- Discussions with the concerned officials for identification of major areas of focus and other related systems.
- A team of engineers visited the Site and had discussions with the concerned officials/ supervisors to collect data/ information on the operations and Load Distribution within the Building. The data was analyzed to arrive at a base line energy consumption pattern.
- Measurements and monitoring with the help of appropriate instruments including continuous and/ or time-lapse recording, as appropriate and visual observations were made to identify the energy usage pattern and losses in the system.

 Computation and in-depth analysis of the collected data, including utilization of computerized analysis and other techniques as appropriate were done to draw inferences and to evolve suitable energy conservation plan/s for improvements/ reduction in specific energy consumption.

#### 1.5. INSTRUMENTATION SUPPORT

Instruments used for undertaking the audit include the following:

- Electric Load Manager with appropriate CT's & PT's for Power Measurements with recording facilities.
- Dual Type Digital Temperature (°C/°F) Measuring Device with appropriate probes;
- Ultra-Sonic Flow Meter
- Flue Gas Analyzer
- Pressure Gauges
- Anemometers
- Lux Meter
- Hygrometer



### **CHAPTER-2 BASE LINE DATA**

### 2.1. GENERAL DETAILS

| Contact Details                    |   |                                                                              |  |  |  |  |
|------------------------------------|---|------------------------------------------------------------------------------|--|--|--|--|
| Brief description of Assignment    | : | Detailed Energy Audit of Electrical Systems & Utility Equipment's.           |  |  |  |  |
| Name & Address of the Building     | : | DIT University<br>Village-Makkawala,<br>Mussoorie Diversion Road<br>Dehradun |  |  |  |  |
| Operational Days                   | : | 330 Days per annum                                                           |  |  |  |  |
| Contact Officer                    | : | Mr. Alok Saxena                                                              |  |  |  |  |
| Power                              |   |                                                                              |  |  |  |  |
| Source                             | : | Uttarakhand power Corporation Limited (UPCL)                                 |  |  |  |  |
| AC No.                             | : |                                                                              |  |  |  |  |
| Sanctioned Load                    | : | 700 KW                                                                       |  |  |  |  |
| Contracted Demand                  | : | 824 KVA                                                                      |  |  |  |  |
| Annual Purchased Power Consumption | : |                                                                              |  |  |  |  |
| Apr. 2021 to Mar. 2022             | : | 14,83,360.00 KWH                                                             |  |  |  |  |
| Apr. 2021 to Mar. 2022             | : | 14,96,600.00 KVAh                                                            |  |  |  |  |
| Annual Purchased Power Bill        | : |                                                                              |  |  |  |  |
| Apr. 2021 to Mar. 2022             | : | Rs. 75,29,504.00                                                             |  |  |  |  |
| Average Purchased Power Cost       | : |                                                                              |  |  |  |  |
| Apr. 2021 to Mar. 2022             | : | Rs. 5.1 per KVAh                                                             |  |  |  |  |
| Apr. 2021 to Mar. 2022             | : | Rs. 5.1 per KWh                                                              |  |  |  |  |
| Energy Charge                      | : | Rs. 4.4 per KVAh                                                             |  |  |  |  |
| Fixed Charge                       | : | Rs. 85 per KVA                                                               |  |  |  |  |
| Electricity Duty                   | : | Rs. 0.3 per KWh                                                              |  |  |  |  |
| Green Energy Charge                | : | Rs. 0.1 per KWh                                                              |  |  |  |  |

### **CHAPTER-3 PRESENT ENERGY SCENARIO**

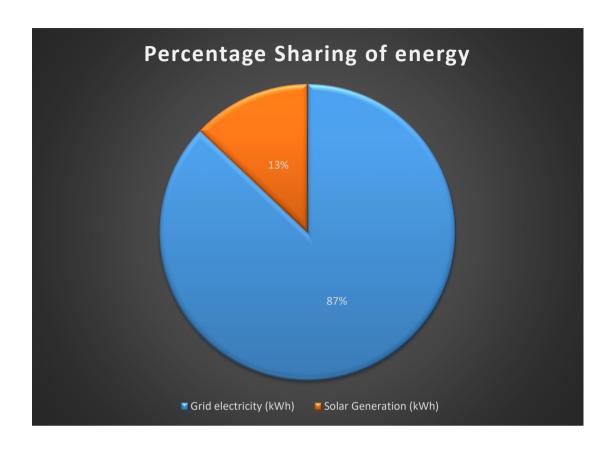
#### 3.1. Purchased Power

DIT University, Dehradun draws power from the Uttarakhand power Corporation Limited (UPCL), at 11 kV; subsequently the voltage is stepped down by one transformer 11 KV to 0.433 KV by 1000 KVA transformer. The Contract demand of plant is 824 KVA. Billing is done on 11 KV.

#### 3.2. REACTIVE POWER COMPENSATION

Based on the electricity bills, it was observed that the power factor from Apr. 2021 to Mar. 2022 varies from 0.922-1.00 i.e., average power factor was 0.993 which appears to be on good side. The building is being billed on KVAH basis; therefore, the effect of power factor is inbuilt in the billing structure. The minimum, maximum and average PF (Apr. 2021 to Mar. 2022) are a s follows.

| Description  | Min. PF | Max. PF | Average PF |
|--------------|---------|---------|------------|
| Power Factor | 0.922   | 1.000   | 0.993      |

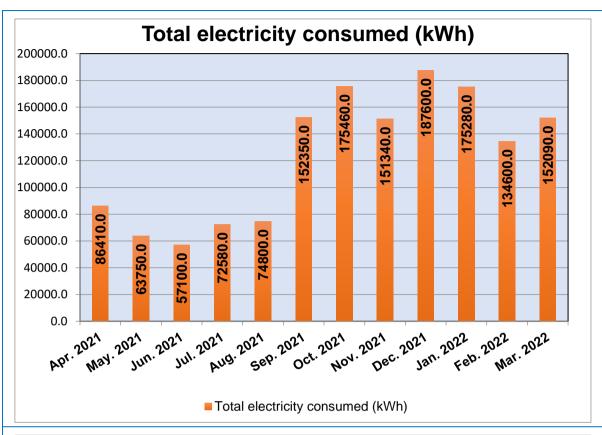

#### 3.3. SELF-GENERATED POWER

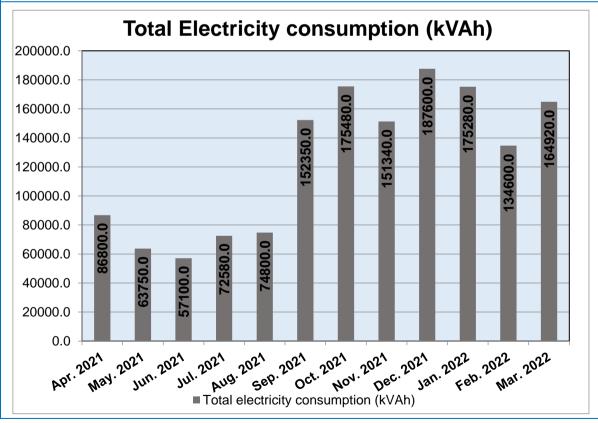
The university has 2 No's DG Sets of 500 KVA & 250 KVA. D.G installed for in-house power generation during power cut. The operation of the DG Sets is during in power cut & testing only.

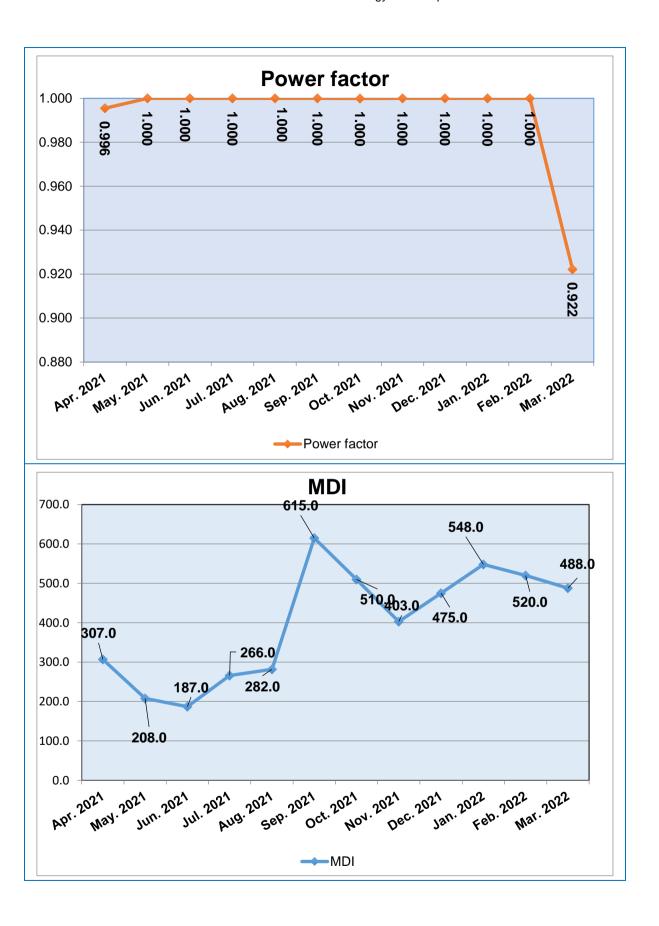
#### 3.4. SOLAR PV

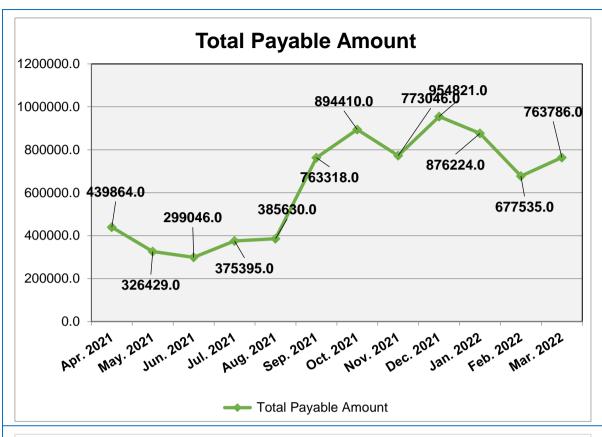
250 kWp solar PV installed on roof top of building. Solar Photovoltaic Cell for Power Generation for lighting load & other load in the Building. Solar Pv installed in different location.

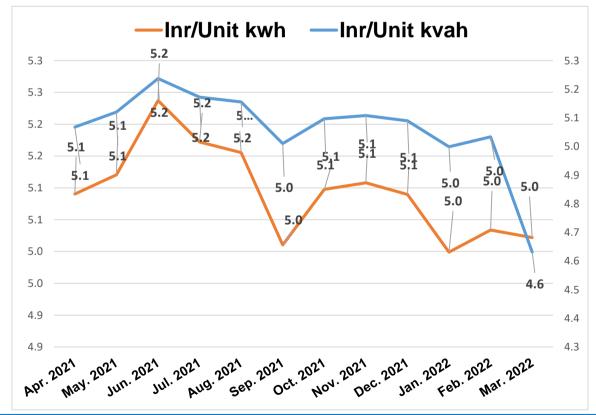
| Description       | Capacity (kWp) |
|-------------------|----------------|
| Workshop Building | 100            |
| Civil Block       | 50             |
| Vedanta Block     | 100            |





#### 3.5. Purchased Power Consumption Pattern


### 3.5.1. Apr 2021- Mar 2022


| Sr. No. | Billing<br>Month | MDI   | Power factor | Electricity<br>consumed<br>(kWh) | Electricity consumption (kVAh) | Solar Adj<br>Unit | Total Unit | Energy<br>Charge | Fixed<br>Charges | Electricity<br>Duty |
|---------|------------------|-------|--------------|----------------------------------|--------------------------------|-------------------|------------|------------------|------------------|---------------------|
| 1       | Apr. 2021        | 307.0 | 0.996        | 86410.0                          | 86800.0                        | 150.0             | 86650.0    | 381260.0         | 70040.0          | 25923.00            |
| 2       | May. 2021        | 208.0 | 1.000        | 63750.0                          | 63750.0                        | 130.0             | 63620.0    | 279928.0         | 70040.0          | 19125.00            |
| 3       | Jun. 2021        | 187.0 | 1.000        | 57100.0                          | 57100.0                        | 650.0             | 56450.0    | 248380.0         | 70040.0          | 17130.00            |
| 4       | Jul. 2021        | 266.0 | 1.000        | 72580.0                          | 72580.0                        | 10.0              | 72570.0    | 319308.0         | 70040.0          | 21774.00            |
| 5       | Aug. 2021        | 282.0 | 1.000        | 74800.0                          | 74800.0                        | 20.0              | 74780.0    | 329032.0         | 70040.0          | 22440.00            |
| 6       | Sep. 2021        | 615.0 | 1.000        | 152350.0                         | 152350.0                       | 0.0               | 152350.0   | 670340.0         | 70040.0          | 45705.00            |
| 7       | Oct. 2021        | 510.0 | 1.000        | 175460.0                         | 175480.0                       | 0.0               | 175480.0   | 772112.0         | 70040.0          | 52638.00            |
| 8       | Nov. 2021        | 403.0 | 1.000        | 151340.0                         | 151340.0                       | 0.0               | 151340.0   | 665896.0         | 70040.0          | 45402.00            |
| 9       | Dec. 2021        | 475.0 | 1.000        | 187600.0                         | 187600.0                       | 0.0               | 187600.0   | 825440.0         | 70040.0          | 56280.00            |
| 10      | Jan. 2022        | 548.0 | 1.000        | 175280.0                         | 175280.0                       | 20.0              | 175260.0   | 771144.0         | 70040.0          | 52584.00            |
| 11      | Feb. 2022        | 520.0 | 1.000        | 134600.0                         | 134600.0                       | 0.0               | 134600.0   | 592240.0         | 70040.0          | 40380.00            |
| 12      | Mar. 2022        | 488.0 | 0.922        | 152090.0                         | 164920.0                       | 0.0               | 164920.0   | 725648.0         | 70040.0          | 45627.00            |
|         | Total            |       |              | 1483360.0                        | 1496600.0                      | 980.0             | 1495620.0  | 6580728.0        | 840480.0         | 445008.0            |
|         | Avg.             | 400.8 | 0.993        | 123613.3                         | 124716.7                       | 81.7              | 124635.0   | 548394.0         | 70040.0          | 37084.0             |
|         | Max              | 615.0 | 1.000        | 187600.0                         | 187600.0                       | 650.0             | 187600.0   | 825440.0         | 70040.0          | 56280.0             |
|         | Min              | 187.0 | 0.922        | 57100.0                          | 57100.0                        | 0.0               | 56450.0    | 248380.0         | 70040.0          | 17130.0             |


| Sr.<br>No. | Billing<br>Month | Green<br>Energy<br>Charge | FCA<br>Charges | Solar<br>Rebate | Current<br>LPS | Amount<br>Due | Adjustment | Other<br>Dues | Total<br>Payable<br>Amount | Inr/Unit<br>kvah | Inr/Unit kwh |
|------------|------------------|---------------------------|----------------|-----------------|----------------|---------------|------------|---------------|----------------------------|------------------|--------------|
| 1          | Apr. 2021        | 8641.0                    | 0.00           | 46000.0         | 0.00           | 0.00          | 0.00       | 0.00          | 439864.0                   | 5.1              | 5.1          |
| 2          | May. 2021        | 6375.0                    | 0.00           | 46000.0         | 0.00           | 0.00          | 0.00       | -3039.0       | 326429.0                   | 5.1              | 5.1          |
| 3          | Jun. 2021        | 5710.0                    | 0.00           | 46000.0         | 9.22           | 737.50        | 0.00       | 3039.0        | 299046.0                   | 5.2              | 5.2          |
| 4          | Jul. 2021        | 7258.0                    | 5079.9         | 46000.0         | 0.00           | 0.00          | 0.00       | -2065.0       | 375395.0                   | 5.2              | 5.2          |
| 5          | Aug. 2021        | 7480.0                    | 5234.6         | 46000.0         | 0.00           | 0.00          | 0.00       | -2597.0       | 385630.0                   | 5.2              | 5.2          |
| 6          | Sep. 2021        | 15235.0                   | 10664.5        | 46000.0         | 0.00           | 0.00          | 0.00       | -2667.0       | 763318.0                   | 5.0              | 5.0          |
| 7          | Oct. 2021        | 17546.0                   | 33341.2        | 46000.0         | 0.00           | 0.00          | -5267.0    | 0.00          | 894410.0                   | 5.1              | 5.1          |
| 8          | Nov. 2021        | 15134.0                   | 28754.6        | 46000.0         | 0.00           | 0.00          | 0.00       | -6181.0       | 773046.0                   | 5.1              | 5.1          |
| 9          | Dec. 2021        | 18760.0                   | 35644.0        | 46000.0         | 0.00           | 0.00          | 0.00       | -5343.0       | 954821.0                   | 5.1              | 5.1          |
| 10         | Jan. 2022        | 17528.0                   | 17526.0        | 46000.0         | 0.00           | 0.00          | 0.00       | -6598.0       | 876224.0                   | 5.0              | 5.0          |
| 11         | Feb. 2022        | 13460.0                   | 13460.0        | 46000.0         | 0.00           | 0.00          | 0.00       | -6045.0       | 677535.0                   | 5.0              | 5.0          |
| 12         | Mar. 2022        | 15209.0                   | 16492.0        | 46000.0         | 0.00           | 0.00          | 0.00       | -4677.0       | 763786.0                   | 4.6              | 5.0          |
|            | Total            | 148336.0                  | 166196.8       | 552000.0        | 9.2            | 737.5         | -5267.0    | -36173.0      | 7529504.0                  |                  |              |
|            | Avg.             | 12361.3                   | 13849.7        | 46000.0         | 0.8            | 61.5          | -438.9     | -3014.4       | 627458.7                   | 5.1              | 5.1          |
|            | Max              | 18760.0                   | 35644.0        | 46000.0         | 9.2            | 737.5         | 0.0        | 3039.0        | 954821.0                   | 5.2              | 5.2          |
|            | Min              | 5710.0                    | 0.0            | 46000.0         | 0.0            | 0.0           | -5267.0    | -6598.0       | 299046.0                   | 4.6              | 5.0          |











- Average monthly consumption of the plant is 1.25 Lakhs kVAh /month, while total annual consumption of the plant is 14.97 Lakhs kVAh units. For fulfilling energy needs DIT University, has been paying Rs. 6.27 lakhs/Month while annually DIT University, is paying Rs 75.30 Lakhs.
- Incoming supply voltage is 11 kV which is further stepped down to 433 V with the help of transformer.
- Average demand of the plant is 400.8 KVA, while variation of M.D. is within 187.0 to 615.0 KVA respectively.
- Maintenance department is doing a great job by maintaining the power factor within the range of 0.99, which is good side. The effect of power factor is inbuilt in the billing structure so to be improves power factor is 0.999.

#### 3.6. SUMMARY

| Average Purchased Power Cost | : |                  |
|------------------------------|---|------------------|
| Apr. 2021 to Mar. 2022       | : | Rs. 5.1 per KVAh |
| Apr. 2021 to Mar. 2022       | : | Rs. 5.1 per KWh  |
| Energy Charge                |   |                  |
| Energy Charge                | : | Rs. 4.4 per KVAh |
| Fixed Charge                 | : | Rs. 85 per KVA   |
| Electricity Duty             |   | Rs. 0.3 per KWh  |
| Green Energy Charge          | : | Rs. 0.1 per KWh  |

#### **CHAPTER-4 TRANSFORMER LOAD PROFILE**

#### 4.1. RATED SPECIFICATION OF TRANSFORMER

DIT University, Dehradun draws power from the Uttarakhand power Corporation Limited (UPCL), at 11 kV; subsequently the voltage is stepped down by one transformer 11 KV to 0.433 KV by 1000 KVA transformer. The Contract demand of plant is 824 KVA. Billing is done on 11 KV.

Details of transformers, whose load profile has been taken during the audit,

| Name Plate Data          | TR-1 |           |
|--------------------------|------|-----------|
| Rated                    | kVA  | 1000      |
| Voltage                  | H. V | 11000     |
|                          | L.V  | 433       |
| Amp.                     | H. V | 52.5      |
|                          | L.V  | 1333.4    |
| Impedance Volt.          | %    | 4.81      |
| Phase                    | -    | 3         |
| HZ                       | -    | 50        |
| Cooling Type             | -    | ONAN      |
| Vector Group             | -    | Dyn11     |
| Mfg.                     | Year | 2012      |
| Make                     | -    | Schneider |
| Remarks                  | -    |           |
| Condition of Transformer | -    | Good      |
| Silica Gel               | -    | OK        |
| Temperature              | -    | OK        |
| Oil Level                |      | OK        |

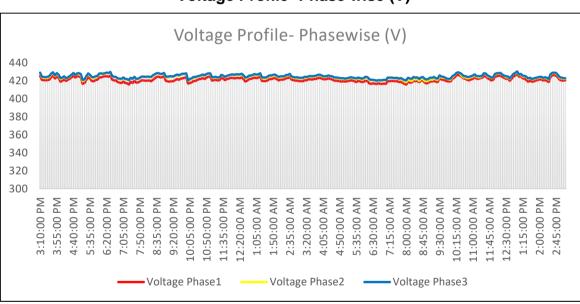
#### 4.2. LOADING ON MAIN INCOMER

The total loading was recorded on 1000 KVA transformers and load profile of transformer was measured during the audit and the averaged-out readings are given here in:

#### 4.2.1. Load Profile of Transformer- 1000 KVA

| Identification  | Max   | Min   | Avg.  |
|-----------------|-------|-------|-------|
| Voltage (Volts) |       |       |       |
| "R" Phase       | 427.5 | 415.6 | 421.0 |
| "Y" Phase       | 429.7 | 418.2 | 424.0 |
| "B" Phase       | 430.2 | 419.9 | 424.7 |

| Identification               | Max    | Min   | Avg.   |
|------------------------------|--------|-------|--------|
| Current (Amps)               |        |       |        |
| "R" Phase                    | 639.8  | 103.8 | 350.8  |
| "Y" Phase                    | 611.9  | 100.1 | 328.9  |
| "B" Phase                    | 658.6  | 100.1 | 356.8  |
| Power Factor                 |        |       |        |
| "R" Phase                    | 0.998  | 0.970 | 0.988  |
| "Y" Phase                    | 0.997  | 0.969 | 0.988  |
| "B" Phase                    | 0.998  | 0.975 | 0.987  |
| Power Drawn (KW)             |        |       |        |
| "R" Phase                    | 154.71 | 24.96 | 84.62  |
| "Y" Phase                    | 148.30 | 23.76 | 79.27  |
| "B" Phase                    | 158.07 | 24.35 | 86.46  |
| Total                        | 461.08 | 73.07 | 250.36 |
| Power Drawn (KVA)            |        |       |        |
| "R" Phase                    | 156.88 | 25.21 | 85.65  |
| "Y" Phase                    | 149.67 | 24.28 | 80.15  |
| "B" Phase                    | 160.91 | 24.54 | 87.66  |
| Total                        | 467.46 | 74.03 | 253.46 |
| Voltage Harmonics<br>(THD %) |        |       |        |
| "R" Phase                    | 2.0    | 1.0   | 1.5    |
| "Y" Phase                    | 2.1    | 1.0   | 1.6    |
| "Y" Phase                    | 2.0    | 0.9   | 1.6    |
| Current Harmonics (THD %)    |        |       |        |
| "R" Phase                    | 12.1   | 3.0   | 7.4    |
| "Y" Phase                    | 12.3   | 3.3   | 7.8    |
| "B" Phase                    | 11.8   | 3.6   | 7.2    |
| Frequency                    | 50.3   | 49.7  | 50.0   |


#### 4.3. GRAPHICAL LOAD PROFILE OF TRANSFORMER

The load profile of the electrical parameters was recorded by using a portable 3-phase power analyzer. During the recording, the power analyzer recorded all the electrical parameters for further detailed analysis. The analysis of the different parameters recorded 24 hours reading at the LT incoming main supply is given below

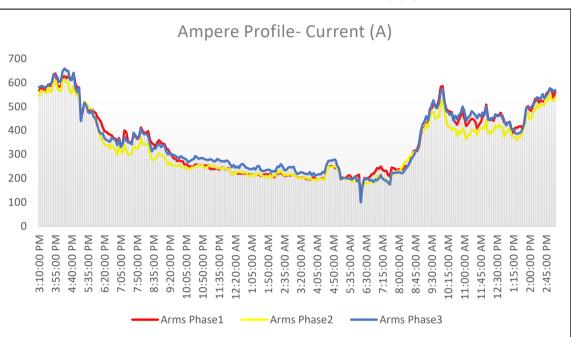
#### 4.3.1. Graphical Load profile of LT Panel Transformer-1

#### A) Graphical Voltage Profile (Volt)

All electrical equipment has a designed range of operating voltage. Therefore, it is important to operate all electrical equipment, within the specified voltage range. The voltage variations in all the three phases (R, Y and B) were recorded at the main Supply. The graphs below depict the variations in the voltage



#### **Voltage Profile- Phase wise (V)**


#### The observations taken from the above graphs:

- There was a slight variation in phase-to-phase voltage.
- The average voltage recorded

|      | Voltage (R) Phase | Voltage(Y) Phase | Voltage(B) Phase |
|------|-------------------|------------------|------------------|
| Max. | 427.5             | 429.7            | 430.2            |
| Min. | 415.6             | 418.2            | 419.9            |
| Ave. | 421.0             | 424.0            | 424.7            |

#### B) Graphical Current Profile (Amp)

Current profile is the variation in the electrical current versus time. The current variations in all the three phases (R, Y and B) were recorded at the main panel of the transformer. The graphs below present the variations in the current:



**Current Profile- Phase wise of the main Supply for 24 hours** 

#### The observations taken from the above graphs:

There is a considerable current variation in the different phases and hence the phase-tophase load is not balanced. The Current variation during the 24 hours of measurement period

|      | Amp. Phase (R) | Amp. Phase (Y) | Amp. Phase (B) |
|------|----------------|----------------|----------------|
| Max. | 639.8          | 611.9          | 658.6          |
| Min. | 103.8          | 100.1          | 100.1          |
| Ave. | 350.8          | 328.9          | 356.8          |

#### C) Graphical Power Factor Profile

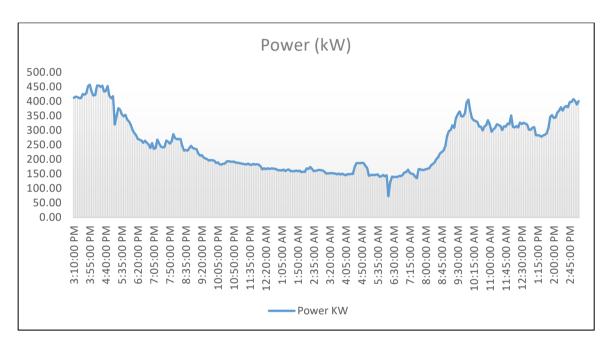
Under the current tariff system, the billed units are in kVAh and the demand charges for apparent power (kVA) depend on the power factor. If the facility has a low power factor, then the demand drawn from the grid will increase and consequently the facility will incur more demand charges. The variation in the power factor was recorded to explore opportunities for improvement. The graph below presents the variations in the power factor of the power supply to the building:

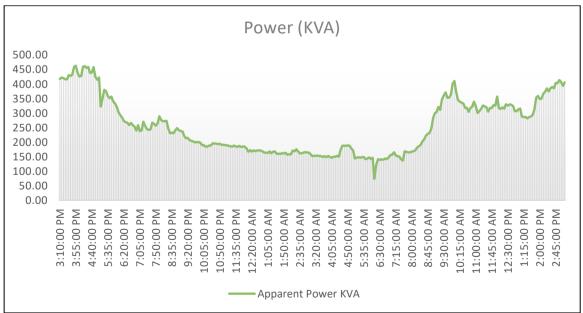
#### **Power Factor** 1.000 0.950 0.900 0.850 0.800 0.750 0.700 3:10:00 PM 3:55:00 PM 4:40:00 PM 5:35:00 PM 6:20:00 PM 7:05:00 PM 7:50:00 PM 8:35:00 PM 9:20:00 PM 0:05:00 PM .0:50:00 PM L1:35:00 PM L2:20:00 AM 1:05:00 AM 1:50:00 AM 2:35:00 AM 3:20:00 AM 4:05:00 AM 4:50:00 AM 5:35:00 AM 6:30:00 AM 7:15:00 AM 8:00:00 AM 8:45:00 AM 9:30:00 AM 0:15:00 AM 1:00:00 AM 11:45:00 AM .2:30:00 PM 1:15:00 PM 2:45:00 PM Power Factor

Power factor profile for the main Incomer

#### The observations taken from the above graphs:

• The Power factor varied from 0.971 to 0.998 during the load hours of measurement period and average 0.988.


#### D) Graphical Load Profile (KW & KVA)


Load (real power) profile and apparent power profile is the variation in the electrical load versus time. In any electrical system, the vector sum of the active power (kW) and reactive power (kVAR) make up the total (or apparent) power (kVA) used. This is the power generated by a generation station for the user to perform a given amount of work. The total power is measured in kVA (Kilo Volts-Amperes) and the load or active power is measured in kW (kilowatts) and they become equal as and when the power factor approaches unity.

Total electricity charges (units and demand) are based on the load or active power (kW) and apparent power (kVA).

During the energy audit studies, the total operating load at the transformer was recorded to find out the variation in the load at different times of the day. The following graph depicts the variation in the load and apparent power of the premises:

#### Load Profile Real power (kW & kVA) profile of 24 Hr. main incomer





#### The observations taken from the graph:

- The load (kW) variation ranges from 73.07 kW to 461.08 kW during the load hours of measurement period and Average 250.36 kW.
- The apparent power (kVA) varies from 74.03 kVA to 467.46 kVA during the Load hours of measurement period and Average 253.46 kVA.
- The maximum loading on the transformer during the load hours of measurement period was 46.75% and the average loading on the transformer was 25.35%. To achieve the best efficiency point of any transformer, the loading value should be around 50 percent.

# 4.4. EFFICIENCY OF TRANSFORMER

The % loading & efficiency calculation is done on the both transformers which are on load at the time of audit. Transformer normally operate in the best efficiency range when loading percentage is around 50-70%. These transformers are running under loaded. The Running efficiency of Transformers-1 is 97.4%.

| Perfo   | rmance Analysis of Transformer  | TD 4 Main Incomes |
|---------|---------------------------------|-------------------|
| Sr. No. | Rated Specifications            | TR-1 Main Incomer |
| 1       | Transformer Rating in KVA       | 1000              |
| 2       | Avg. Load in KVA                | 253.5             |
| 3       | Present % Loading               | 25.3              |
| 4       | Total Losses of Transformer(kW) | 6.5               |
| 5       | Operating Power Factor          | 0.988             |
| 6       | Total Loss (KVA)                | 6.58              |
| 7       | Transformer Efficiency, %       | 97.4              |
| 8       | Avg. Load in KW                 | 250.36            |
| 9       | Max Load in KW                  | 461.08            |
| 10      | Min. Load in KW                 | 73.07             |

Remarks: Transformer normally operate in the best efficiency range when the loading percentage is around 50-70% of the rated capacity.

# 4.5. OTHER FEEDER LOADS

| Particulars       | Raman<br>Building | Bose<br>Hostel | Boys<br>Mess | Bhabha<br>Hostel | Sarabhai<br>Hostel | Workshop<br>Building | Chanakya<br>Building Old | Civil Block<br>(Visvesvaraya) |
|-------------------|-------------------|----------------|--------------|------------------|--------------------|----------------------|--------------------------|-------------------------------|
| Voltage (Volts)   |                   |                |              |                  |                    |                      |                          |                               |
| "R" Phase         | 428               | 422            | 421          | 423              | 429                | 422                  | 426                      | 429                           |
| "Y" Phase         | 427               | 422            | 420          | 421              | 428                | 423                  | 425                      | 430                           |
| "B" Phase         | 427               | 421            | 421          | 423              | 428                | 424                  | 425                      | 429                           |
| Voltage (Volts)   |                   |                |              |                  |                    |                      |                          |                               |
| "R" Phase         | 247               | 244            | 243          | 244              | 248                | 244                  | 246                      | 248                           |
| "Y" Phase         | 247               | 244            | 242          | 243              | 247                | 244                  | 245                      | 248                           |
| "B" Phase         | 247               | 243            | 243          | 244              | 247                | 245                  | 245                      | 248                           |
| Current (Amps)    |                   |                |              |                  |                    |                      |                          |                               |
| "R" Phase         | 3.3               | 8              | 12           | 12               | 28.1               | 68                   | 5                        | 40.0                          |
| "Y" Phase         | 6.2               | 12             | 8            | 11               | 26.1               | 65                   | 3                        | 42.0                          |
| "B" Phase         | 4.5               | 7              | 9            | 10               | 34.6               | 71                   | 4                        | 41.0                          |
| Power Factor      |                   |                |              |                  |                    |                      |                          |                               |
| "R" Phase         | 0.780             | 0.980          | 0.870        | 0.860            | 0.890              | 0.956                | 0.760                    | 0.840                         |
| "Y" Phase         | 0.800             | 0.970          | 0.820        | 0.840            | 0.900              | 0.942                | 0.740                    | 0.810                         |
| "B" Phase         | 0.810             | 0.960          | 0.810        | 0.845            | 0.920              | 0.945                | 0.740                    | 0.830                         |
| Power Drawn (KW)  |                   |                |              |                  |                    |                      |                          |                               |
| "R" Phase         | 0.6               | 1.9            | 2.5          | 2.5              | 6.2                | 15.8                 | 0.9                      | 8.3                           |
| "Y" Phase         | 1.2               | 2.8            | 1.6          | 2.2              | 5.8                | 15.0                 | 0.5                      | 8.4                           |
| "B" Phase         | 0.9               | 1.6            | 1.8          | 2.1              | 7.9                | 16.4                 | 0.7                      | 8.4                           |
| Total             | 2.7               | 6.4            | 5.9          | 6.8              | 19.9               | 47.2                 | 2.2                      | 25.2                          |
| Power Drawn (KVA) |                   |                |              |                  |                    |                      |                          |                               |
| "R" Phase         | 0.8               | 1.9            | 2.9          | 2.9              | 7.0                | 16.6                 | 1.2                      | 9.9                           |

| Particulars | Raman<br>Building | Bose<br>Hostel | Boys<br>Mess | Bhabha<br>Hostel | Sarabhai<br>Hostel | Workshop<br>Building | Chanakya<br>Building Old | Civil Block<br>(Visvesvaraya) |
|-------------|-------------------|----------------|--------------|------------------|--------------------|----------------------|--------------------------|-------------------------------|
| "Y" Phase   | 1.5               | 2.9            | 1.9          | 2.7              | 6.4                | 15.9                 | 0.7                      | 10.4                          |
| "B" Phase   | 1.1               | 1.7            | 2.2          | 2.4              | 8.6                | 17.4                 | 1.0                      | 10.2                          |
| Total       | 3.4               | 6.6            | 7.0          | 8.0              | 22.0               | 49.8                 | 2.9                      | 30.5                          |

| Particulars      | Chanakya<br>Building<br>(New) | Chanakya<br>(AC<br>Panel) | Chanakya<br>Building<br>(New) | Vasto<br>Building | Pharmacy<br>Building | Vedanta<br>Building | Vedanta<br>AC Panel | Sarojni<br>Hostel | Kasturba<br>Hostel |
|------------------|-------------------------------|---------------------------|-------------------------------|-------------------|----------------------|---------------------|---------------------|-------------------|--------------------|
| Voltage (Volts)  |                               |                           |                               |                   |                      |                     |                     |                   |                    |
| "R" Phase        | 421                           | 423                       | 423                           | 428.2             | 424                  | 425                 | 426                 | 422               | 410                |
| "Y" Phase        | 424                           | 421                       | 424                           | 427.6             | 425                  | 424                 | 426                 | 423               | 409                |
| "B" Phase        | 421                           | 424                       | 421                           | 428               | 424                  | 425                 | 425                 | 424               | 407                |
| Voltage (Volts)  |                               |                           |                               |                   |                      |                     |                     |                   |                    |
| "R" Phase        | 243                           | 244                       | 244                           | 247               | 245                  | 245                 | 246                 | 244               | 237                |
| "Y" Phase        | 245                           | 243                       | 245                           | 247               | 245                  | 245                 | 246                 | 244               | 236                |
| "B" Phase        | 243                           | 245                       | 243                           | 247               | 245                  | 245                 | 245                 | 245               | 235                |
| Current (Amps)   |                               |                           |                               |                   |                      |                     |                     |                   |                    |
| "R" Phase        | 36.5                          | 45                        | 75                            | 15                | 18                   | 70                  | 116                 | 4                 | 62                 |
| "Y" Phase        | 33.2                          | 45                        | 72                            | 14                | 19                   | 71                  | 122                 | 3                 | 68                 |
| "B" Phase        | 62.2                          | 46                        | 71                            | 16                | 20                   | 76                  | 116                 | 2.8               | 84                 |
| Power Factor     |                               |                           |                               |                   |                      |                     |                     |                   |                    |
| "R" Phase        | 0.964                         | 0.917                     | 0.870                         | 0.927             | 0.832                | 0.920               | 0.850               | 0.790             | 0.970              |
| "Y" Phase        | 0.954                         | 0.913                     | 0.863                         | 0.947             | 0.845                | 0.930               | 0.840               | 0.800             | 0.960              |
| "B" Phase        | 0.945                         | 0.914                     | 0.864                         | 0.928             | 0.835                | 0.930               | 0.830               | 0.820             | 0.970              |
| Power Drawn (KW) |                               |                           |                               |                   |                      |                     |                     |                   |                    |

| Particulars       | Chanakya<br>Building<br>(New) | Chanakya<br>(AC<br>Panel) | Chanakya<br>Building<br>(New) | Vasto<br>Building | Pharmacy<br>Building | Vedanta<br>Building | Vedanta<br>AC Panel | Sarojni<br>Hostel | Kasturba<br>Hostel |
|-------------------|-------------------------------|---------------------------|-------------------------------|-------------------|----------------------|---------------------|---------------------|-------------------|--------------------|
| "R" Phase         | 8.6                           | 10.1                      | 15.9                          | 3.4               | 3.7                  | 15.8                | 24.3                | 0.8               | 14.2               |
| "Y" Phase         | 7.8                           | 10.0                      | 15.2                          | 3.3               | 3.9                  | 16.2                | 25.2                | 0.6               | 15.4               |
| "B" Phase         | 14.3                          | 10.3                      | 14.9                          | 3.7               | 4.1                  | 17.3                | 23.6                | 0.6               | 19.1               |
| Total             | 30.6                          | 30.4                      | 46.1                          | 10.4              | 11.7                 | 49.3                | 73.1                | 1.9               | 48.8               |
| Power Drawn (KVA) |                               |                           |                               |                   |                      |                     |                     |                   |                    |
| "R" Phase         | 8.9                           | 11.0                      | 18.3                          | 3.7               | 4.4                  | 17.2                | 28.5                | 1.0               | 14.7               |
| "Y" Phase         | 8.1                           | 10.9                      | 17.6                          | 3.5               | 4.7                  | 17.4                | 30.0                | 0.7               | 16.1               |
| "B" Phase         | 15.1                          | 11.3                      | 17.3                          | 4.0               | 4.9                  | 18.6                | 28.5                | 0.7               | 19.7               |
| Total             | 32.1                          | 33.2                      | 53.2                          | 11.1              | 14.0                 | 53.2                | 87.0                | 2.4               | 50.5               |

# **CHAPTER-5 REACTIVE POWER COMPENSATION**

#### 5.1. CAPACITOR BANK INSTALLED

The plant is being billed on KVAh basis; therefore, the effect of power factor is inbuilt in the billing structure. In plant different rating LT capacitor banks are installed. The actual KVAr delivery of individual Capacitor banks were measured during the Energy Audit. Results are given in the table.

#### 5.2. CAPACITOR BANK

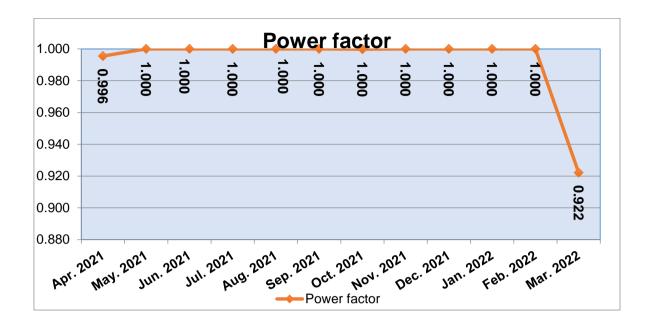
The plant is being billed on kVAh basis; therefore, the effect of power factor is inbuilt in the billing structure. In plant one APFC panels (420 kVAr) capacitor bank panels are installed on main incomer. Details of capacitor measurement are given in the below table.

|         | APFC-420 kVAr |       |            |                   |            |        |         |  |  |
|---------|---------------|-------|------------|-------------------|------------|--------|---------|--|--|
|         | Capacity      | Rated |            | Measured          |            |        | %Loadin |  |  |
| Sr. No. | (kVAr)        | (amp) | Measured-R | <b>Measured-Y</b> | Measured-B | Remark | g       |  |  |
| CB-1    | 10            | 13.1  | 13.2       | 13.2              | 13.1       | OK     | 100.5   |  |  |
| CB-2    | 10            | 13.1  | 13.7       | 13.5              | 13.1       | OK     | 102.4   |  |  |
| CB-3    | 50            | 65.5  | 50.2       | 50.2              | 51.1       | OK     | 77.1    |  |  |
| CB-4    | 50            | 65.5  | 42.3       | 43.5              | 46.9       | OK     | 67.5    |  |  |
| CB-5    | 25            | 32.8  | 32.9       | 32.1              | 30.4       | OK     | 97.1    |  |  |
| CB-6    | 25            | 32.8  | 24.6       | 26.5              | 27.7       | OK     | 80.2    |  |  |
| CB-7    | 25            | 32.8  | 30.0       | 28.7              | 29.6       | OK     | 89.9    |  |  |
| CB-8    | 25            | 32.8  | 32.2       | 31.2              | 30.6       | OK     | 95.7    |  |  |
| CB-9    | 50            | 65.5  | 61.2       | 60.3              | 59.9       | OK     | 92.3    |  |  |
| CB-10   | 50            | 65.5  | 60.2       | 60.6              | 58.7       | OK     | 91.3    |  |  |
| CB-11   | 25            | 32.8  | 31.2       | 30.5              | 31.0       | OK     | 94.4    |  |  |
| CB-12   | 25            | 32.8  | 22.2       | 30.2              | 30.0       | OK     | 83.9    |  |  |
| CB-13   | 25            | 32.8  | 29.2       | 30.1              | 31.2       | OK     | 92.1    |  |  |
| CB-14   | 25            | 32.8  | 29.3       | 31.1              | 30.7       | OK     | 92.7    |  |  |
| Total   | 420           |       |            |                   |            |        |         |  |  |

#### 5.3. RECOMMENDATIONS

# 5.3.1. Improvement in the Operating Power Factor

The plant is being billed on KVAh basis; therefore, the effect of power factor is inbuilt in the billing structure. In plant LT capacitor banks are installed. The minimum, maximum and average PF (Apr 2021 to Mar 2022) as per electricity bill are as follows


| Description | Avg. Power Factor |
|-------------|-------------------|
| Min. PF     | 0.922             |
| Max. PF     | 1.000             |
| Average PF  | 0.993             |

There are three capacitor bank panel is installed in the building at LT Side. The building is being billed on KVAh basis; therefore, the effect of power factor is inbuilt in the billing structure. Based on the electrical bills (11 KV) for Apr 2021 to Mar 2022, the operating power factor on the main incomer varied from 0.922 to 1.000. However, if we look at the overall average power factor is around 0.993, which is satisfactory, which is good side. The effect of power factor is inbuilt in the billing structure so to be improves power factor is 0.999

It is thus recommended to the capacitor banks wherein the delivery is poor (less than 70%) or out of order may be replaced, so that the overall system power factor is maintained at around 0.99 (lag). Improvement in the power factor would subsequently reduce the KVAh consumption, Since the plant management is maintaining Power factor 0.99, so no specific recommendation has been made on PF improvement.

# 5.3.2. Actual P.F from Electricity bill

| Month     | Power Factor |
|-----------|--------------|
| Apr. 2021 | 0.996        |
| May. 2021 | 1.000        |
| Jun. 2021 | 1.000        |
| Jul. 2021 | 1.000        |
| Aug. 2021 | 1.000        |
| Sep. 2021 | 1.000        |
| Oct. 2021 | 1.000        |
| Nov. 2021 | 1.000        |
| Dec. 2021 | 1.000        |
| Jan. 2022 | 1.000        |
| Feb. 2022 | 1.000        |
| Mar. 2022 | 0.922        |
| Avg.      | 0.993        |



# 5.3.3. Advantages of Power Factor Improvement

- Reactive components of the network are reduced and so also the total current in the system from the source end.
- I2R power losses are reduced in the system because of reduction in current.
- Voltage level at the load end is increased.
- kVA loading on the source generators as also on the transformers and line up to the capacitors reduce giving capacity relief. A high-power factor can help in utilities the full capacity of the electrical system.

# 5.3.4. Cost benefits of Power Factor Improvement

- Reduced kVA (Maximum Demand) charges in electricity bill
- Reduced distribution losses (kWh) within the plant network
- Better voltage at motor terminals and improved performance of motors
- A high-power factor eliminates penalty charges imposed when operating with low power factor

# **CHAPTER-6 POWER QUALITY**

#### 6.1. Power Quality & Harmonics

Equipment based on frequency conversion techniques generates harmonics. With the increased use of such equipment's, **harmonics** related problems have enhanced.

The harmonic currents generated by different types of loads, travel back to the source. While traveling back to the source, they generate harmonic voltages, following simple Ohm's Law. Harmonic voltages, which appear on the system bus, are harmful to other equipment connected on the same bus. In general, sensitive electronic equipment connected on this bus, will be affected.

The Harmonics Level on the LT side of the Transformers was measured, details of which is as under: -

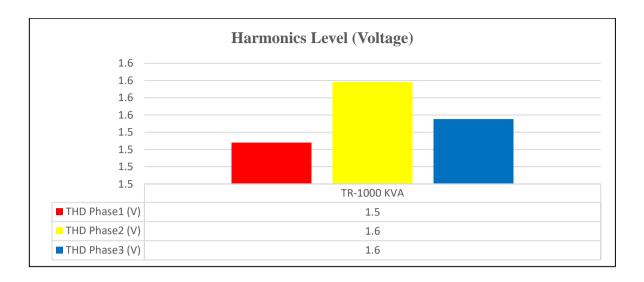
The Harmonic Voltage and Current Limitations set forth by IEEE 519 1992 are:

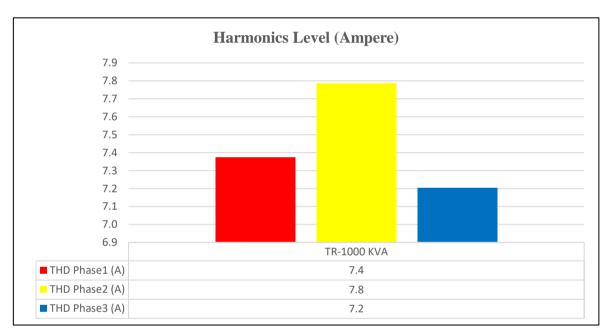
- Maximum Individual Frequency Voltage Harmonic: 3%
- Total Harmonic Distortion of the Voltage: 5%

#### harmonic current limitations

Maximum Harmonic Current Distortion in Percent of IL 120 Volt through 69 KV Individual Harmonic Order (Odd Harmonics) ISC/IL h<11 11<h<17 17<h<23 23<h<35 35<h TDD <20\* 4.0 2.0 1.5 0.6 0.3 20<50 3.5 0.5 8.0 1.0 50<100 10.0 4.5 4.0 1.5 0.7 12.0 15.0 100<1000 12.0 5.5 5.0 2.0 1.0 >1000 15.0 7.0 6.0 2.5

Even harmonics are limited to 25% of the odd harmonic limits TDD refers to Total Demand Distortion based on the average demand current at the fundamental frequency and measured at the PCC (Point of Common Coupling).


\*All power generation equipment is limited to these values of current distortion regardless of ISC/ IL value.


ISC = Maximum short-circuit current at PCC.

IL = Maximum demand load current (fundamental) at the PCC.

h = Harmonic number.

|                           | Transformer-1000 KVA |  |  |  |  |
|---------------------------|----------------------|--|--|--|--|
| Particulars               | Overall<br>(Average) |  |  |  |  |
| Voltage Harmonics (V THD) |                      |  |  |  |  |
| "R" Phase                 | 1.5                  |  |  |  |  |
| "Y" Phase                 | 1.6                  |  |  |  |  |
| "B" Phase                 | 1.6                  |  |  |  |  |
| Current Harmonics (A THD) |                      |  |  |  |  |
| "R" Phase                 | 7.4                  |  |  |  |  |
| "Y" Phase                 | 7.8                  |  |  |  |  |
| "B" Phase                 | 7.2                  |  |  |  |  |





As detailed above, the average voltage harmonics levels were around below 4%, which is under limit. The current harmonics levels were around below 8%, which is under limit. The Overall Voltage harmonics for Transformer are within limit and current harmonics for Transformer is within limit.

If Harmonics level is on higher side then appropriate harmonic filters may have to be installed in the system.

Different technologies are available mitigating the harmonics from the system. These include:

**Detuned or broadband harmonic filters**: these filter banks are tuned to a frequency just below the predominant harmonic frequency. If the predominant harmonic frequency is said, 5th, it is normal practice to tune the filters to 189 Hz, or 3.78<sup>th</sup> harmonic, in 50 Hz systems. **Active Harmonic Filters:** these units are designed in such manner that, they will inject harmonic frequencies in the system, which will be in anti-phase of the load harmonic frequencies. This will effectively free the source being loaded due to harmonics.

#### 6.2. OBSERVATIONS & SUGGESTIONS:

It is clear from the above data that the voltage & Current harmonics are within limit.

# 6.3. Major Causes of Harmonics

Devices that draw non-sinusoidal currents when a sinusoidal voltage is applied create harmonics. Frequently these are devices that convert AC to DC. Some of these devices are listed below:

**Electronic Switching Power Converters** 

- Computers, Uninterruptible power supplies (UPS), Solid-state rectifiers
- Electronic process control equipment, PLC's, etc
- · Electronic lighting ballasts, including light dimmer
- Reduced voltage motor controllers

#### **Arcing Devices**

- Discharge lighting, e.g. Fluorescent, Sodium and Mercury vapor
- Arc furnaces, Welding equipment, Electrical traction system, Ferromagnetic Devices
- Transformers operating near saturation level
- Magnetic ballasts (Saturated Iron core)
- Induction heating equipment, Chokes, Motors

#### **Appliances**

- TV sets, air conditioners, washing machines, microwave ovens
- Fax machines, photocopiers, printers

These devices use power electronics like SCRs, diodes, and thyristors, which are a growing

Percentage of the load in industrial power systems.

Many problems can arise from harmonic currents in a power system. Some problems are easy to detect; others exist and persist because harmonics are not suspected. Higher RMS current and voltage in the system are caused by harmonic currents, which can result in any of the problems listed below:

| Blinking of Incandescent Lights           | Transformer Saturation         |
|-------------------------------------------|--------------------------------|
| Capacitor Failure                         | Harmonic Resonance             |
| Circuit Breakers Tripping                 | Inductive Heating and Overload |
| Conductor Failure                         | Inductive Heating              |
| Electronic Equipment Shutting down        | Voltage Distortion             |
| Flickering of Fluorescent Lights          | Transformer Saturation         |
| Fuses Blowing for No Apparent Reason      | Inductive Heating and Overload |
| Motor Failures (overheating)              | Voltage Drop                   |
| Neutral Conductor and Terminal Failures   | Additive Triplen Currents      |
| Electromagnetic Load Failures             | Inductive Heating              |
| Overheating of Metal Enclosures           | Inductive Heating              |
| Power Interference on Voice Communication | Harmonic Noise                 |
| Transformer Failures                      | Inductive Heating              |

# **CHAPTER-7LIGHTING SYSTEMS**

# 7.1. LIGHTING

# 7.1.1. Systems Installed

Various types of lighting fixtures are installed in different Area as and locations. Premises has already installed energy Efficient LED Lights at most of the places.



Energy Efficient LED Lights offer reduction in the power consumption besides excellent color rendering properties and high luminous efficacy. The detail of lighting fixtures is given below:

LED Light, Street Light, Flood Light, PL, etc. Energy Efficient LED Lights offer reduction in the power consumption besides excellent color rendering properties and high luminous efficacy. The detail of lighting fixtures is given below:

# 7.1.2. Types of Lighting fitting Fixtures

| Sr. No | Fixture                   | Power Rating (Watt) |
|--------|---------------------------|---------------------|
| 1      | LED Tube Light            | 18/20               |
| 2      | LED Tube Light            | 10                  |
| 3      | Panel Light 2'x2'         | 36                  |
| 4      | LED Bulb                  | 9                   |
| 5      | Office Cobe Light         | 5/610/12/18/22      |
| 6      | Street/ Outside LED Light | 100/20              |
| 7      | T5 Tube light             | 28                  |
| 8      | T8 Tube light             | 36                  |
| 9      | CFL                       | 18WX2               |
| 10     | CFL                       | 36WX2               |

Different types of Light various watts are installed in plant. As units has already installed LEDs lights, still further saving in light could be achieved by taking following steps.

# 7.1.3. Time based control or Daylight linked control

Timed-turnoff switches are the least expensive type of automatic lighting control. In some cases, their low cost and ease of installation makes it desirable to use them where more efficient controls would be too expensive. Newer types of timed-turnoff switches are completely electronic and silent. The best choice is an electronic unit that allows the engineering staff to set a fixed time interval behind the cover plate. This system is recommended for street Lighting application in the building. Photoelectric cells can be used either simply to switch lighting on and off, or for dimming. They may be mounted either externally or internally. It is however important to incorporate time delays into the control

system to avoid repeated rapid switching caused, for example, by fast moving clouds. By using an internally mounted photoelectric dimming control system, it is possible to ensure that the sum of daylight and electric lighting always reaches the design level by sensing the total light in the controlled area and adjusting the output of the electric lighting accordingly. If daylight alone is able to meet the design requirements, then the electric lighting can be turned off. The energy saving potential of dimming control is greater than a simple photoelectric switching system

# 7.1.4. Localized Switching

Localized switching should be used in applications, which contain large spaces. Local switches give individual occupants control over their visual environment and also facilitate energy savings. By using localized switching, it is possible to turn off artificial lighting in specific areas, while still operating it in other areas where it is required, a situation which is impossible if the lighting for an entire space is controlled from a single switch.

#### 7.1.5. Ilumination & Lux level

To study, analyze and identify energy conservation options in lighting, a study of the unit lighting load was conducted. The purpose of the study was to determine the lighting load and its distribution in various sections of the buildings, determine the quality of illumination provided, and recommend measures to improve illumination and reduce electricity consumption.

A high quality and accurate digital LUX meter was used to measure the illumination level at various sections of the building during working hours. Other performance indicators such as type of lamps used, luminaries, mounting height, physical condition of lamps, use of day lighting, etc. were also noted down

Major reasons for poor illumination levels at selected locations of the building are as follows:

- Poor reflectors/no reflector installed for the tube lights.
- Large height of installed fittings from the working plane.
- Reduction in illumination due to ageing.
- Very old fittings and dust deposition on luminaries

# 7.1.6. Lux Level Measurements

| Srl. | Location                   | LUX |     |     |     | Average Lux |
|------|----------------------------|-----|-----|-----|-----|-------------|
|      | Civil Block                |     |     |     |     |             |
| 1    | Seminar Hall               | 350 | 420 | 450 | 410 | 408         |
| 2    | Room-105                   | 330 | 390 | 400 | 395 | 379         |
| 3    | Room-205                   | 250 | 270 | 290 | 320 | 283         |
| 4    | Room-214                   | 400 | 380 | 335 | 350 | 366         |
| 5    | Room-302                   | 290 | 310 | 320 | 350 | 318         |
| 6    | Room-503                   | 250 | 280 | 310 | 280 | 280         |
|      | Workshop                   |     |     |     |     |             |
| 7    | WS-01                      | 320 | 280 | 290 | 350 | 310         |
| 8    | WL-107                     | 260 | 235 | 240 | 290 | 256         |
| 9    | WL-201                     | 220 | 190 | 250 | 240 | 225         |
| 10   | Engineering Physics Lab-II | 450 | 390 | 440 | 390 | 418         |
| 11   | WL-303                     | 260 | 240 | 210 | 275 | 246         |
|      | Vasto Building             |     |     |     |     |             |
| 12   | Room-304 Lecture Hall-3    | 240 | 260 | 220 | 180 | 225         |
| 13   | Room-104                   | 305 | 418 | 400 | 390 | 378         |
| 14   | Room-105 Studio-2          | 320 | 310 | 290 | 330 | 313         |
| 15   | Room-402 Studio-7          | 450 | 410 | 380 | 290 | 383         |
|      | Building-Pharmacy          |     |     |     |     |             |
| 16   | Room-409                   | 380 | 370 | 365 | 290 | 351         |
| 17   | Pharmacology Lab-II        | 275 | 290 | 260 | 250 | 269         |
| 18   | Pharmaceutics Lab-V        | 390 | 430 | 445 | 450 | 429         |
| 19   | Lecture Hall-III           | 320 | 290 | 340 | 300 | 313         |
| 20   | Pharmacognosy lab-l        | 680 | 590 | 610 | 625 | 626         |
| 21   | Pharm. Chem Lab-1          | 340 | 280 | 300 | 265 | 296         |
|      | Vedanta Building           |     |     |     |     |             |
| 22   | Room-507                   | 280 | 290 | 390 | 400 | 340         |
| 23   | Lecture Hall-25            | 280 | 350 | 210 | 265 | 276         |
| 24   | Computer network lab-424   | 320 | 300 | 345 | 290 | 314         |
| 25   | Room-404                   | 220 | 190 | 180 | 175 | 191         |
| 26   | Room-328                   | 250 | 255 | 210 | 220 | 234         |
| 27   | Romm-305                   | 240 | 260 | 270 | 220 | 248         |

# 7.1.7. Assessment of lighting system

**Example: Room** 

Lux Measured = Average Lux = 286

Length of the Room = 18ft.

Width of the Room = 14ft

Working Place Height = 10ft

| 287 | 284 |
|-----|-----|
|     |     |
|     |     |

| STEP 1 | Measure the Floor area of the interior :                                                                    | Area = 18x14 = 252 sqft          |
|--------|-------------------------------------------------------------------------------------------------------------|----------------------------------|
| STEP 2 | Calculate the Room Index                                                                                    | RI = .78                         |
|        | 18 x 14 / 10 (18 + 14) = .78                                                                                |                                  |
| STEP 3 | Determine the total circuit watts of the installation by a power meter if a separate feeder for lighting is | Total Circuit watts              |
|        | available. If the actual value is not known a                                                               | 54 W x 16 = 864                  |
|        | reasonable approximate can be obtained by totaling up the lamp wattage including the ballasts               | 32 W x 4 = 128                   |
|        | 21 - 2 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                  | TOTAL = 992W                     |
| STEP 4 | Calculate Watts per square meter, Value of Step 3 ÷ Value of Step 1                                         | $W/m^2 = 3.9$                    |
| STEP 5 | Ascertain the average maintained luminance by using Lux Meter, Eav. Maintained                              | Eav.maint = 286                  |
| STEP 6 | Divide 5 by 4 to calculate Lux per Watt per square Meter                                                    | Lux/W/m $^2$ = 72.77             |
| STEP 7 | Obtain target Lux/W/M2 lux for type of the type of interior/ application and RI (2)                         | Target Lux/W/m <sup>2</sup> = 36 |
| STEP 8 | Calculate Installed Load Efficacy Ratio (6 ÷ 7)                                                             | ILER = 2.02                      |

# ILER 0.75 or over = Satisfactory to Good

# Measuring Units Light Level - illuminance

Illuminance is measured in foot candles (ftcd, fc, fcd) or lux in the metric SI system). A foot candle is actually one lumen of light density per square foot, one Isux is one lumen per square meter.

- 1 lux = 1 lumen / sq meter = 0.0001 phot = 0.0929 foot candle (ftcd, fcd)
- 1 phot = 1 lumen / Sq centimeter = 10000 lumens / sq meter = 10000 lux
- 1 foot candle (ftcd, fcd) = 1 lumen / sqft = 10.752 lux

# **Common Light Level Outdoor**

Common light levels outdoor at day and night can be found in the table below:

|              |    | 1.00         |         |           |
|--------------|----|--------------|---------|-----------|
| Ι ΙΙΥ ΙΔΙΙΔΙ | Λt | dittarant    | naturai | occasions |
| LUX ICVCI    | v  | unit Ci Ci i | Hatulai | Occasions |

| Condition      | Illumination |         |  |  |  |
|----------------|--------------|---------|--|--|--|
|                | (ftcd)       | (lux)   |  |  |  |
| Sunlight       | 10,000       | 107,527 |  |  |  |
| Full Daylight  | 1,000        | 10,752  |  |  |  |
| Overcast Day   | 100          | 1075    |  |  |  |
| Very Dark Day  | 10           | 107     |  |  |  |
| Twilight       | 1            | 10.8    |  |  |  |
| Deep Twilight  | .1           | 1.08    |  |  |  |
| Full Moon      | .01          | .108    |  |  |  |
| Quarter Moon   | .001         | .0108   |  |  |  |
| Starlight      | .0001        | .0011   |  |  |  |
| Overcast Night | .0001        | .0001   |  |  |  |

# 7.1.8. Common and Recommended Light Levels Indoor

The outdoor light level is approximately 10,000 lux on a clear day. In the building, in the area closes to windows, the light level may be reduced to approximately 1,000 lux. In the middle area its may be as low as 25- 50 lux. Additional lighting equipment is often necessary to compensate the low levels.

Earlier it was common with light levels in the range 100 - 300 lux for normal activities. Today the light level is more common in the range 500 - 1000 lux – depending on activity. For precision and detailed works, the light level may even approach 1500 - 2000 lux.

The table below is a guidance for recommended light level in different work spaces:

| Activity                                                                       | Illumination<br>(lux, lumen/m²) |
|--------------------------------------------------------------------------------|---------------------------------|
| Public areas with dark surroundings                                            | 20 -50                          |
| Simple orientation for short visits                                            | 50 -100                         |
| Working areas where visual tasks are only occasionally performed               | 100 -150                        |
| Warehouse, Homes, Theaters, Archives                                           | 150                             |
| Easy Office work, classes                                                      | 250                             |
| Normal Office work, PC work, Study library, Groceries, show room, laboratories | 500                             |
| Supermarkets, Mechanical workshops, Office landscapes                          | 750                             |
| Normal Drawing work, very detailed mechanical works                            | 1000                            |
| Detailed drawing work, very detailed mechanical works                          | 1500 -2000                      |

| Performance of visual tasks of low contract and very small                                   | 2000 -5000    |
|----------------------------------------------------------------------------------------------|---------------|
| size for prolonged periods of time                                                           |               |
| Performance of visual tasks of low contract and very small size for prolonged period of time | 2000 -5000    |
| Performance of very prolonged and exacting visuals tasks                                     | 5000 – 10000  |
| Performance of very special visual tasks of extremely low contract and small size            | 10000 - 20000 |

# 7.2. RECOMMENDATIONS

# 7.2.1. Optimization of the Main Incomer Voltage on Main Panel

The average voltage on LT side of Transformers was around 244 V. This may be an adequate voltage for motive loads like motors etc, but for the lighting systems normally, the voltage should be around 220 volts (phase to neutral). A reduction of around 15% in the lighting voltage can reduce the power consumption by around 20%.

As the conventional light was replaced with LED lamps in phase manner the effect of voltage reduction in terms of power saving will be almost negligible. However, reduction and stabilization of voltage will improve the life of lamps.

# **CHAPTER-8 D.G SETS**

#### 8.1. D.G. RATED SPECIFICATIONS

The plant has installed 02 No's DG Set of 500 KVA & 250 KVA. for in-house power generation. The DG is run during power cut and testing only. All DG set synchronize together. The rated specification of DG is as follows

| Name Plate Data | Unit  | DG-1  | DG-2  |
|-----------------|-------|-------|-------|
| Rated           | kVA   | 500   | 250   |
|                 | kW    | 400   | 200   |
| Voltage         | V     | 415   | 415   |
| Amp.            | I     | 695.6 | 348.0 |
| Phase           |       | 3     | 3     |
| PF              |       | 0.8   | 0.8   |
| RPM             |       | 1500  | 1500  |
| Frequency       | Hz    | 50    | 50    |
| Excitation      | Volts | 48    | 48    |
| Excitation      | Amps  | 2.3   | 2.3   |

#### 8.2. Performance assessment of D. G.

During the audit we measured the specific fuel consumption (kWh/Ltr) of DG sets. Analyses of last one-year DG log book details for Apr. 2021 to Mar. 2022. Specific energy consumption shows in below table as per standard

The analysis of the different parameters recorded reading at the L.T incoming main supply and during this period the diesel consumption was also recorded empty tank method

The standard specific fuel consumption (SFC) of DG sets is in the range of 3.0 to 4.0 kWh/ltr. Present Average SFC of DG is 3.0 to 3.3 kWh/Ltr, which is good as per design value.

#### 8.3. OBSERVATION AND RECOMMENDATIONS

The plant has installed 02 No's DG Set of 500 KVA & 250 KVA for in-house power generation. The DG is run during power cut and testing only. Specific power generation is dependent on the DG loading and its overall condition.

- 1. D.G sets are neat & clean
- 2. DG set area should have Proper Ventilation
- 3. DG Log book proper maintain

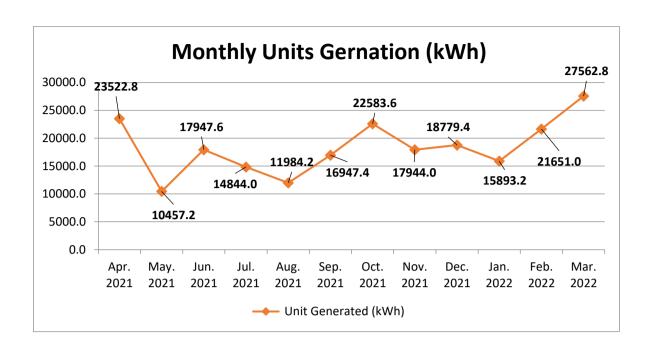
4. To be suggest Energy kWh in log book

#### 8.4. GENERAL RECOMMENDATIONS FOR ENERGY MEASURED IN DG SETS

- 1. Ensure Steady load condition on the DG set and avoid idle running.
- **2.** Improve air filtration.
- **3.** Ensure fuel oil storage, handling and preparation as per manufacturers' guidelines/oil company data.
- **4.** Calibrate and overhaul fuel injectors and injection pumps regularly as recommended by manufacturer.
- 5. Ensure compliance with maintenance checklist
- **6.** Ensure steady load conditions, avoiding fluctuations, imbalance in phases, harmonic loads.
- **7.** Carryout regular field trials to monitor DG set performance, and maintenance planning as per requirements.
- 8. Efficiency of DG Set can be increase by loading 70-80% load
- 9. The starting current of squirrel cage induction motor is as much as six times the rated current for a few seconds with direct-on-line starters. In practice, it has been found that the starting current value should not exceed 200% of the full load capacity of the alternator. The voltage and frequency throughout the motor starting interval recovers and reaches rated values usually much before the motor has picked up full speed
- 10. It is always recommended to have the load as much balanced as possible, since the unbalanced loads can cause heating of the alternator, which may result in unbalanced output voltage. The maximum unbalanced load between phases should not exceed 10% of the capacity of the generating sets.
- 11. The electricity rules clearly specify that two independent earths to the body and neutral should be provided to give adequate protection to the equipment in case of an earth fault and to drain away any leakage of potential from the equipment to the earth.

# **CHAPTER-9 SOLAR PHOTOVOLTAIC CELL**

# 9.1. INSTALLATION OF SOLAR PHOTOVOLTAIC CELL (SPV)


The 250 kWp solar PV installed on roof top of building. Solar Photovoltaic Cell for Power Generation for lighting load & other load in the Building, **Solar photovoltaic technologies** convert solar energy into useful energy forms by directly absorbing solar photons—particles of light that act as individual units of energy—and either converting part of the energy to electricity. **A-Z Energy Engineers Pvt. Ltd. acknowledges and appreciates the commitment of the management towards conservation of Energy.** 



| Sr. No | Description       | Capacity (kWp) |
|--------|-------------------|----------------|
| 1      | Workshop Building | 100            |
| 2      | Civil Block       | 50             |
| 3      | Vedanta Block     | 100            |

# 9.2. UNIT GENERATION BY SOLAR PV

| Sr No. | Month     | days of<br>Month | Unit Generated<br>(kWh) | CUF (%) | Average per day<br>generation<br>(KWp) |
|--------|-----------|------------------|-------------------------|---------|----------------------------------------|
| 1      | Apr. 2021 | 30               | 23522.8                 | 13.1    | 3.1                                    |
| 2      | May. 2021 | 31               | 10457.2                 | 5.6     | 1.3                                    |
| 3      | Jun. 2021 | 30               | 17947.6                 | 10.0    | 2.4                                    |
| 4      | Jul. 2021 | 31               | 14844.0                 | 8.0     | 1.9                                    |
| 5      | Aug. 2021 | 31               | 11984.2                 | 6.4     | 1.5                                    |
| 6      | Sep. 2021 | 30               | 16947.4                 | 9.4     | 2.3                                    |
| 7      | Oct. 2021 | 31               | 22583.6                 | 12.1    | 2.9                                    |
| 8      | Nov. 2021 | 30               | 17944.0                 | 10.0    | 2.4                                    |
| 9      | Dec. 2021 | 31               | 18779.4                 | 10.1    | 2.4                                    |
| 10     | Jan. 2022 | 31               | 15893.2                 | 8.5     | 2.1                                    |
| 11     | Feb. 2022 | 28               | 21651.0                 | 12.9    | 3.1                                    |
| 12     | Mar. 2022 | 31               | 27562.8                 | 14.8    | 3.6                                    |
|        |           | 365              | 220117.20               | 10.1    | 2.4                                    |



Capacity Utilization Factor (C.U.F) = (Actual energy from the plant (kWh))

(Plant Capacity (kwp) x 24 x 365)

The performance of Solar PV plant is less than national average of 19%. It is therefore, suggested to regularly clean these panels for better performance

The units or kWh output of a solar panel will depend on the panel efficiency and availability of sunlight in a location. The factor that defines this output is called CUF (or Capacity Utility Factor). For India, it is typically taken as 19% and the calculation of units goes as:

# Units Generated Annually (in kWh) = System Size in Kw \* CUF \* 365 \* 24.

So typically, a 1 kW capacity solar system will generate 1600-1700 kWh of electricity per year. This can provide electricity for 25 years.

# 9.3. OBSERVATION AND RECOMMENDATIONS

However, the less generation of units is due to poor maintenance of Solar panel, as dust, deposited on the surface of solar plates, which act as shield from sun rays thus effecting the power generation badly. it is recommended that the solar panel inspect the structure at regular intervals for dirt or some other things that might have piled on top. It is important that the panels should be kept clean.

# **CHAPTER-10 THERMOGRAPHY**

# 10.1.THERMAL IMAGINE

Thermography is a term used to describe a type of photography that uses infrared radiated wavelengths to make pictures as opposed to visible light as in normal photographs. It can be also referred to as 'thermal imaging' or 'infrared'. Objects that have a temperature above absolute zero (-273.15°C or 0 Kelvin) emit infrared wavelengths. Thermography is the production of thermal (heat) pictures from these wavelengths, whereby temperature measurements or comparative analysis can be made.

This survey and report combine images to provide a general thermo graphic overview of the Cables, panels & motors, together with a selection of close-up observations of areas with particular interest. Whilst care has been taken to record temperatures as accurately as possible, the absolute values obtained should be treated with a degree of caution. Variable environmental conditions together with changes in camera angle, distance, material change and emissivity can all adversely affect the result. However, by combining images with equal parameters the 'relative' change of temperature across a selected material will be accurate and therefore useful analysis can be made.

From discussions prior to the survey, the following points have been incorporated into the methodology of data collection and presentation of findings.

- The survey to be a combination of general scanning and capturing of selected images that may fairly represent the situation. (Qualitative Survey).
- Anomalies noted to be identified either within the narrative or on the image.
- In order to classify the severity of the thermal anomalies recorded, atmospheric site temperature was used as a rated temperature.
- Emissivity is set as per the contact probe meter. For setting a emissivity following method was used.

# 10.2. SUMMARY OF SCANNED EQUIPMENT

In appendix A section of this report contains the actual thermo graphic images of the anomalies. For all anomalies, we have included a control photograph identifying the equipment (regular photograph) and a thermo graphic image (thermal image) of the area where the anomaly was found.

# 10.3. GENERAL RECOMMENDATIONS AND COMMENTS

In general, after taking a number of thermal images, we have seen various spots are over the safe temperature limit. You should take appropriate action to capture the heat loss. It creates harmful area for human beings and we can avoid the injuries.

Note: Where temperature is on higher side reason

- 1) Lose connection
- 2) Under size cable

# CHAPTER-18 OTHER POSSIBLE AREAS FOR ENERGY SAVINGS

#### 18.1. DAY LIGHT HARVESTING

Although there is no simpler way to reduce the amount of energy consumed by lighting system than to manually turn OFF whenever not needed, this is not done as often as it could be. In response, automatic lighting control strategies can be adopted:

 Scheduling Control: Use a time scheduling device to control lighting systems according to predetermined schedules

A central processor with relays is usually capable of controlling several output channels, each of which may be assigned to one or more lighting circuits. Overrides can be provided to accommodate individuals who use the space during scheduled off hours.

- Day lighting: Control lights in response to the presence of daylight illumination in the space
- Lumen Maintenance: gradually adjust the electric light levels over time to correspond with the depreciation of light output from ageing lamps.
- Occupancy Sensing: Control light in response to the presence or absence of people in the space

These are automatic scheduling devices that detect motion and turn ON / OFF the lights accordingly. Most of these devices can be calibrated for sensitivity and for the length of time delay between the last detected occupancy and extinguishing of light. Occupancy sensors typically consist of a motion detector, a control unit and a relay.

Occupancy-linked control can be achieved using infrared, acoustic, ultrasonic or microwave sensors, which detect either movement or noise in room spaces. These sensors switch lighting on when occupancy is detected, and off again after a set time period, when no occupancy movement detected. They are designed to override manual switches and to prevent a situation where lighting is left on in unoccupied spaces. With this type of system it is important to incorporate a built-in time delay, since occupants often remain still or quiet for short periods and do not appreciate being plunged into darkness if not constantly moving around.

Daylight Harvesting is the term used in sustainable architecture and the building controls for a control system that reduces the use of artificial lighting with electric lamps in building interiors when natural daylight is available, in order to reduce energy consumption. The concept of daylight harvesting is simple. Digital photo sensors detect daylight levels and automatically adjust the output level of electric lighting to create a balance. The goal is energy savings.

Until now there have been barriers to widespread acceptance of daylight harvesting. This is due in part to complications associated with commissioning. With the availability of integrated micro panel lighting controls, with 2 or 4 switching outputs daylight harvesting is feasible. The features normally include unique set points, delays and adjustment curves for every relay.

#### 18.2. TIMED BASED CONTROL OR DAYLIGHT LINKED CONTROL

Timed-turnoff switches are the least expensive type of automatic lighting control. In some cases, their low cost and ease of installation makes it desirable to use them where more efficient controls would be too expensive. Newer types of timed-turnoff switches are completely electronic and silent. The best choice is an electronic unit that allows the engineering staff to set a fixed time interval behind the cover plate. This system is recommended for street Lighting application in the building. Photoelectric cells can be used either simply to switch lighting on and off, or for dimming. They may be mounted either externally or internally. It is however important to incorporate time delays into the control system to avoid repeated rapid switching caused, for example, by fast moving clouds. By using an internally mounted photoelectric dimming control system, it is possible to ensure that the sum of daylight and electric lighting always reaches the design level by sensing the total light in the controlled area and adjusting the output of the electric lighting accordingly. If daylight alone is able to meet the design requirements, then the electric lighting can be turned off. The energy saving potential of dimming control is greater than a simple photoelectric switching system.

# 18.3.Localized Switching

Localized switching should be used in applications, which contain large spaces. Local switches give individual occupants control over their visual environment and also facilitate energy savings. By using localized switching it is possible to turn off artificial lighting in specific areas, while still operating it in other areas where it is required, a situation which is impossible if the lighting for an entire space is controlled from a single switch.

# CHAPTER-19 GENERAL TIPS FOR ENERGY CONSERVATION IN DIFFERENT UTILITIES SYSTEMS

#### 19.1.ELECTRICITY

- Schedule your operations to maintain a high load factor
- Minimize maximum demand by tripping loads through a demand controller
- □ Use standby electric generation equipment for on-peak high load periods.
- □ Correct power factor to at least 0.99 under rated load conditions.
- Set transformer taps to optimum settings.
- □ Shut off unnecessary computers, printers, and copiers at night.

#### **19.2.Motors**

- Properly size to the load for optimum efficiency.
- □ (High efficiency motors offer of 4 5% higher efficiency than standard motors)
- Check alignment.
- Provide proper ventilation
- □ (For every 10°C increase in motor operating temperature over recommended peak, the motor life is estimated to be halved)
- □ Check for under-voltage and over-voltage conditions.
- Balance the three-phase power supply.
- Demand efficiency restoration after motor rewinding.

#### **19.3. Drives**

- □ Use variable-speed drives for large variable loads.
- Use high-efficiency gear sets.
- Use precision alignment.
- □ Check belt tension regularly.
- □ Eliminate variable-pitch pulleys.
- Use flat belts as alternatives to v-belts.
- Use synthetic lubricants for large gearboxes.
- Eliminate eddy current couplings.
- Shut them off when not needed.

#### 19.4.FANS

- Use smooth, well-rounded air inlet cones for fan air intakes.
- Avoid poor flow distribution at the fan inlet.
- Minimize fan inlet and outlet obstructions.
- □ Clean screens, filters, and fan blades regularly.
- Use aerofoil-shaped fan blades.
- Minimize fan speed.
- Use low-slip or flat belts.
- Check belt tension regularly.
- □ Eliminate variable pitch pulleys.
- □ Use variable speed drives for large variable fan loads.
- □ Use energy-efficient motors for continuous or near-continuous operation
- □ Eliminate leaks in ductwork.
- Minimize bends in ductwork
- □ Turn fans off when not needed.

#### 19.5.BLOWERS

- □ Use smooth, well-rounded air inlet ducts or cones for air intakes.
- Minimize blower inlet and outlet obstructions.
- Clean screens and filters regularly.
- Minimize blower speed.
- □ Use low-slip or no-slip belts.
- Check belt tension regularly.
- □ Eliminate variable pitch pulleys.
- □ Use variable speed drives for large variable blower loads.
- □ Use energy-efficient motors for continuous or near-continuous operation.
- Eliminate ductwork leaks.
- □ Turn blowers off when they are not needed.

#### 19.6.Pumps

- Operate pumping near best efficiency point.
- □ Modify pumping to minimize throttling.
- Adapt to wide load variation with variable speed drives or sequenced control of smaller units.
- □ Stop running both pumps -- add an auto-start for an on-line spare or add a booster pump in the problem area.
- Use booster pumps for small loads requiring higher pressures.
- □ Increase fluid temperature differentials to reduce pumping rates.
- Repair seals and packing to minimize water waste.
- Balance the system to minimize flows and reduce pump power requirements.
- □ Use siphon effect to advantage: don't waste pumping head with a free-fall (gravity) return.

#### **19.7. LIGHTING**

- □ Reduce excessive illumination levels to standard levels using switching, delamping, etc. (Know the electrical effects before doing delamping.)
- Aggressively control lighting with clock timers, delay timers, photocells, and/or occupancy sensors.
- Install efficient alternatives to incandescent lighting, mercury vapor lighting, etc. Efficiency (lumens/watt) of various technologies range from best to worst approximately as follows: low pressure sodium, high pressure sodium, metal halide, fluorescent, mercury vapor, incandescent.
- □ Select ballasts and lamps carefully with high power factor and long-term efficiency in mind.
- Upgrade obsolete fluorescent systems to Compact fluorescents and electronic ballasts
- Consider lowering the fixtures to enable using less of them.
- Consider daylighting, skylights, etc.
- □ Consider painting the walls a lighter color and using less lighting fixtures or lower wattages.
- Use task lighting and reduce background illumination.
- □ Re-evaluate exterior lighting strategy, type, and control. Control it aggressively.
- Change exit signs from incandescent to LED.

#### **19.8.DG SETS**

Optimize loading

- □ Use waste heat to generate steam/hot water /power an absorption chiller or preheat process or utility feeds.
- □ Use jacket and head cooling water for process needs
- Clean air filters regularly
- □ Insulate exhaust pipes to reduce DG set room temperatures
- Use cheaper heavy fuel oil for capacities more than 1MW

#### 19.9.Buildings

- □ Seal exterior cracks/openings/gaps with caulk, gasketing, weatherstripping, etc.
- □ Consider new thermal doors, thermal windows, roofing insulation, etc.
- Install windbreaks near exterior doors.
- Replace single-pane glass with insulating glass.
- Consider covering some window and skylight areas with insulated wall panels inside the building.
- If visibility is not required but light is required, consider replacing exterior windows with insulated glass block.
- □ Consider tinted glass, reflective glass, coatings, awnings, overhangs, draperies, blinds, and shades for sunlit exterior windows.
- Use landscaping to advantage.
- □ Add vestibules or revolving doors to primary exterior personnel doors.
- Consider automatic doors, air curtains, strip doors, etc. at high-traffic passages between conditioned and non-conditioned spaces. Use self-closing doors if possible.
- Use intermediate doors in stairways and vertical passages to minimize building stack effect.
- Use dock seals at shipping and receiving doors.
- □ Bring cleaning personnel in during the working day or as soon after as possible to minimize lighting and HVAC costs.

#### 19.10. WATER & WASTEWATER

- □ Recycle water, particularly for uses with less-critical quality requirements.
- Recycle water, especially if sewer costs are based on water consumption.
- □ Balance closed systems to minimize flows and reduce pump power requirements.
- □ Eliminate once-through cooling with water.
- □ Use the least expensive type of water that will satisfy the requirement.
- □ Fix water leaks.
- ☐ Test for underground water leaks. (It's easy to do over a holiday shutdown.)
- □ Check water overflow pipes for proper operating level.
- Automate blowdown to minimize it.
- □ Provide proper tools for wash down -- especially self-closing nozzles.
- Install efficient irrigation.
- Reduce flows at water sampling stations.
- □ Eliminate continuous overflow at water tanks.
- Promptly repair leaking toilets and faucets.
- □ Use water restrictors on faucets, showers, etc.
- □ Use self-closing type faucets in restrooms.
- Use the lowest possible hot water temperature.

- Do not use a heating system hot water boiler to provide service hot water during the cooling season -- install a smaller, more-efficient system for the cooling season service hot water.
- □ If water must be heated electrically, consider accumulation in a large insulated storage tank to minimize heating at on-peak electric rates.
- □ Use multiple, distributed, small water heaters to minimize thermal losses in large piping systems.
- Use freeze protection valves rather than manual bleeding of lines.
- Consider leased and mobile water treatment systems, especially for deionized water.
- Seal sumps to prevent seepage inward from necessitating extra sump pump operation.
- Install pretreatment to reduce TOC and BOD surcharges.
- □ Verify the water meter readings. (You'd be amazed how long a meter reading can be estimated after the meter breaks or the meter pit fills with water!)
- Verify the sewer flows if the sewer bills are based on them

#### 19.11. MISCELLANEOUS

- Meter any unmetered utilities. Know what normal efficient use is. Track down causes of deviations.
- □ Shut down spare, idling, or unneeded equipment.
- ☐ Make sure that all of the utilities to redundant areas are turned off -- including utilities like compressed air and cooling water.
- ☐ Install automatic control to efficiently coordinate multiple air compressors, chillers, cooling tower cells, boilers, etc.
- Renegotiate utilities contracts to reflect current loads and variations.
- □ Consider buying utilities from neighbors, particularly to handle peaks.
- □ Leased space often has low-bid inefficient equipment. Consider upgrades if your lease will continue for several more years.
- □ Adjust fluid temperatures within acceptable limits to minimize undesirable heat transfer in long pipelines.
- Minimize use of flow bypasses and minimize bypass flow rates.
- □ Provide restriction orifices in purges (nitrogen, steam, etc.).
- Eliminate unnecessary flow measurement orifices.
- Consider alternatives to high-pressure drops across valves.
- □ Turn off winter heat tracing that is on in summer.

#### **Annexure-1**

# **Certification**

This part shall indicate certification by Accredited Energy Auditor stating that:

- (i) The data collection has been carried out diligently and truthfully;
- (ii) All data monitoring devices are in good working condition and have been calibrated or certified by approved agencies authorized and no tempering of such devices has occurred
- (iii) All reasonable professional skill, case and diligence had been taken in preparing the energy audit report and the contents thereof are a true representation of the facts;
- (iv) Adequate training provided to personnel involved in daily operations after implementation of recommendations; and
- (v) The energy audit has been carried out in accordance with the Bureau of Energy Efficiency (Manner and Intervals of Time for the Conduct of Energy Audit) Regulations, 2010.

(Dr. P.P. Mittal)

**Accredited Energy Auditor AEA-011** 

#### Annexure-2

# **Certificate of Accreditation**



Annexure-3

Recommended Lux Levels for different locations

|   | Recommended Edx Ecvers for different           |       |
|---|------------------------------------------------|-------|
| > | Entrance                                       |       |
|   | Entrance halls, lobbies, waiting rooms         | = 200 |
|   | Enquiry Desks                                  | = 500 |
|   | Gate Houses                                    | = 200 |
| > | Circulation Areas                              |       |
|   | Lifts                                          | = 100 |
|   | Corridors, passageways, stairs                 | = 100 |
|   | Escalators, revelators                         | = 150 |
| > | Medicine & First Aid Centers                   |       |
|   | Consulting Rooms, Treatment Rooms              | = 500 |
|   | Rest Rooms                                     | = 150 |
|   | Medical Stores                                 | = 150 |
| > | Staff Rooms                                    |       |
|   | Offices                                        | = 300 |
|   | Changing, locker and cleaners room,            | = 100 |
|   | Cloak rooms, lavatories                        |       |
|   | Rest Rooms                                     | = 150 |
| > | Staff Restaurants                              |       |
|   | Canteens, Cafeterias, dining rooms, mess rooms | = 200 |
|   | Survey, vegetable preparation, washing up area | = 300 |
|   | Food preparation & cooking                     | = 500 |
|   | Food stores, cellars                           | = 150 |
| > | Communication                                  |       |
|   | Switch board rooms                             | = 300 |
|   | Telephone, apparatus rooms                     | = 150 |
|   | Telex room, post rooms                         | = 500 |
|   | Reprographic room                              | = 300 |
|   |                                                |       |

#### **Annexure-4**

# **Transformers Standard Losses in watts**



19th December, 2016

#### Important Instructions to all Distribution Transformer manufacturers and permittee:

This is with reference to the amendment notification, S.O. No. 4062 (E) for Distribution Transformer dated 16<sup>th</sup> December, 2016. Amendments in the star rating programs as follows:

Table 2 (Effective from 1st January, 2017 onwards)

|                 | Star 1                  |                             | Star 2                  |                             | Star 3                  |                             | Star 4                  |                             | Star 5                  |                             |
|-----------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|
| Rating<br>(kVA) | 50 Per<br>cent.<br>Load | 100<br>Per<br>cent.<br>Load |
| 16              | 135                     | 440                         | 120                     | 400                         | 108                     | 364                         | 97                      | 331                         | 87                      | 301                         |
| 25              | 190                     | 635                         | 175                     | 595                         | 158                     | 541                         | 142                     | 493                         | 128                     | 448                         |
| 63              | 340                     | 1140                        | 300                     | 1050                        | 270                     | 956                         | 243                     | 870                         | 219                     | 791                         |
| 100             | 475                     | 1650                        | 435                     | 1500                        | 392                     | 1365                        | 352                     | 1242                        | 317                     | 1130                        |
| 160             | 670                     | 1950                        | 570                     | 1700                        | 513                     | 1547                        | 462                     | 1408                        | 416                     | 1281                        |
| 200             | 780                     | 2300                        | 670                     | 2100                        | 603                     | 1911                        | 543                     | 1739                        | 488                     | 1582                        |

Table 3 (Effective from 1st January, 2017 onwards)

| Rating (kVA) Per Cent. Impe dance | Per                        | Star 1                      |                            |                             | Star 2                     |                             | Star 3                     |                             | Star 4                     |                             | Star 5 |  |
|-----------------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|--------|--|
|                                   | 50<br>Per<br>Cent.<br>Load | 100<br>Per<br>Cent.<br>Load |        |  |
| 250                               | 4.5                        | 980                         | 2930                       | 920                         | 2700                       | 864                         | 2488                       | 811                         | 2293                       | 761                         | 2113   |  |
| 315                               | 4.5                        | 1025                        | 3100                       | 955                         | 2750                       | 890                         | 2440                       | 829                         | 2164                       | 772                         | 1920   |  |
| 400                               | 4.5                        | 1225                        | 3450                       | 1150                        | 3330                       | 1080                        | 3214                       | 1013                        | 3102                       | 951                         | 2994   |  |
| 500                               | 4.5                        | 1510                        | 4300                       | 1430                        | 4100                       | 1354                        | 3909                       | 1282                        | 3727                       | 1215                        | 3554   |  |

स्वहित एवं राष्ट्रहित में ऊर्जा बचाएँ Save Energy for Benefit of Self and Nation

चौथा तल, सेवा भवन, आर० के० पुरम, नई दिल्ली-110 066 वेबसाईट/Website : www.beeindia.in 4th Floor, Sewa Bhawan, R.K. Puram, New Delhi-110 066 टेली/Tel.: 26179699 (5 Lines) फैक्स/Fax : 91 (11) 26178352

| 630  | 4.5  | 1860 | 5300  | 1745 | 4850  | 1637 | 4438  | 1536 | 4061      | 1441 | 3717   |
|------|------|------|-------|------|-------|------|-------|------|-----------|------|--------|
| 1000 | 5    | 2790 | 7700  | 2620 | 7000  | 2460 | 6364  | 2310 | 5785      | 2170 | 5259   |
| 1250 | 5    | 3300 | 9200  | 3220 | 8400  | 3142 | 7670  | 3066 | 7003      | 2991 | 6394   |
| 1600 | 6.25 | 4200 | 11800 | 3970 | 11300 | 3753 | 10821 | 3547 | 1036      | 3353 | 9924   |
| 2000 | 6.25 | 5050 | 15000 | 4790 | 14100 | 4543 | 13254 | 4309 | 1245<br>9 | 4088 | 11711  |
| 2500 | 6.25 | 6150 | 18500 | 5900 | 17500 | 5660 | 16554 | 5430 | 1565<br>9 | 5209 | 14813" |

Manufacturers/permittee should consider the following for getting star rating approvals:

- Manufacturers/Permittee are allowed to renew their existing models as per table 2 w.e.f 22<sup>nd</sup> December, 2016.
- 2. All the existing models will be valid till 31st December 2016 and after this, these models will be made expired automatically by BEE.
- 3. Manufacturers/Permittee are allowed to register their fresh models as per table 2 & table 3 w.e.f 22<sup>nd</sup> December, 2016.

Read the following instructions carefully for those manufacturers who wish to continue the existing model.

#### A. Renewal of Existing Model:

If the existing model is continued to comply with revised star level, then the following shall apply:

- 1. A renewal option (i.e., from table 1 to table 2) will be available on manufacturers/permittee's web portal from 22<sup>nd</sup> December, 2016. If any of the permittee willing to continue their existing model, a <u>declaration on company letter head</u> (with stamp & sign of authorised signatory) needs to be submitted to the Bureau Along with Renewal fee of five hundred rupees. (Renewal fee may be paid through Online Banking or Demand Draft).
- 2. After verification, approval letter will be send to permittee for the renewed model with revised star level and it will directly appear in Search & Compare page of BEE star label website (<a href="http://www.beestarlabel.com/Home/Searchcompare">http://www.beestarlabel.com/Home/Searchcompare</a>).

#### Cases in which continuation is applicable:

**Case 1:** A 100 KVA distribution transformer with Brand name.....DEF......and model no. ...ABC/x/y/z..... is registered with BEE as per existing table 1 (valid up to 31<sup>st</sup> December,2016) and its Total Losses (at 50% loading- 435 W & at 100% loading- 1500 W) i.e. **5 star as per existing table.** 

So after revision, for the same brand & model with the Total Losses (at 50% loading- 435 W & at 100% loading- 1500 W) i.e. **2 star as per revised table** (Table 2).

Case 2: A 100 KVA distribution transformer with Brand name.....DEF......and model no. ...ABC/x/y/z...... is registered with BEE as per existing table 1 (valid up to 31st December,2016) and its Total Losses (at 50% loading- 317 W & at 100% loading- 1130 W) i.e. 5 star as per existing table.

So after revision, for the same brand & model with the Total Losses (at 50% loading- 317 W & at 100% loading- 1130 W) i.e. 5 star as per revised table (Table 2).

In both the cases, old test reports would be applicable and BEE would consider the old test report for granting renewal approvals. Declaration is applicable even for Case 2, if there is no technical modification in order to comply with revised energy performance standards (i.e. table 2).

#### B. How to apply:

**Renewal:** All these expired models will appear in manufacturer's portal and in order to renew the model, the following link (marked in red colour) needs to be clicked. Where renewal form will be generated. The link (marked in red colour) would directly appear in manufacturer's portal w.e.f 22<sup>nd</sup> December, 2016.

Renewal

Saurabh Diddi (Energy Economist) 19th December, 2016

For further queries write to: <a href="mailto:helpdesk@beenet.in">helpdesk@beenet.in</a>, <a href="mailto:mkhiriya@beenet.in">mkhiriya@beenet.in</a>