Home (http://ipindia.nic.in/index.htm) About Us (http://ipindia.nic.in/about-us.htm) Who's Who (http://ipindia.nic.in/whos-who-page.htm) Policy & Programs (http://ipindia.nic.in/policy-pages.htm) Achievements (http://ipindia.nic.in/achievements-page.htm) RTI (http://ipindia.nic.in/right-to-information.htm) Feedback (https://ipindiaonline.gov.in/feedback) Sitemap (shttp://ipindia.nic.in/right-to-information.htm)

Contact Us (http://ipindia.nic.in/contact-us.htm) Help Line (http://ipindia.nic.in/helpline-page.htm)

Skip to Main Content Screen Reader Access (screen-reader-access.htm)

(http://ipindia.nic.in/index.htm)

Patent Search

Invention Title	ANN BASED SWITCHING OF CAPACITOR BANK IN AN EV POWERED BY MODIFIED FUEL CELL
Publication Number	31/2021
Publication Date	30/07/2021
Publication Type	INA
Application Number	202111030020
Application Filing Date	05/07/2021
Priority Number	
Priority Country	
Priority Date	
Field Of Invention	ELECTRICAL
Classification (IPC)	H01M0008124000, H01M0008061200, H01M0008124600, H02K0053000000, H01M0008242500

Inventor

Name	Address	Country
Dr. Samta Manori	Dehradun Institute of Technology University, Dehradun, Uttarakhand, India. E-mail: samta.manori@gmail.com	India
Ms. Anita Dhyani	Department of Physics S.G.R.R. (P.G.) College Dehradun HNB Garhwal Central University Uttarakhand, India E-mail: anita121dhyani@gmail.com	India
Dr. Ashutosh Trivedi	University of Ontario Canada. E-mail: ashutoshee07@gmail.com	India
Dr. Ashok Manori	Women Institute of Technology, Suddhowala, Dehradun, 248007, India. E-mail: ashok12manori@gmail.com	India

Applicant

Name	Address	Country	ı
Dr. Samta Manori	Dehradun Institute of Technology University, Dehradun, Uttarakhand, India. E-mail: samta.manori@gmail.com	India	ı

Abstract:

Battery and fuel cell, combined with the Ultra-Capacitors (UC), has major advantage as an electric vehicle's power source. Appropriate switching of UC bank with batte can provide better utilization of UCs. Switching performance of the capacitor bank can be improved by the proper mapping of drive cycle using Artificial Neural Netw With proper mapping, size and rating of capacitive switching bank can be reduced which reduces the cost and increases the life of bank as the switching losses are le predictive series parallel combinations of UCs, switching frequency of the UC bank and heating losses can be reduced. Due to increased demand of green and sustain resources of energy for power consumption, Solid Oxide Fuel Cells (SOFC) have attracted much interest of researchers and industries as an alternative power general due to their improved efficiency, working temperature, start-up time and environment friendly characteristics. Fuel cells generate electrical energy from chemical ene any combustion, and hence, they have become one of the decisive technologies for production of hydrogen energy in the coming generations. Thus, by implementat film based SOFC along with a battery powered EV, can greatly enhance the power density and efficiency of the electric vehicle with reduced size of power supply.

Complete Specification

Claims:WE CLAIMS

- 1. Battery and fuel cell, combined with the Ultra-Capacitors (UC), has major advantage as an electric vehicle's power source. Appropriate switching of UC bank wit storage can provide better utilization of UCs. Switching performance of the capacitor bank can be improved by the proper mapping of drive cycle using Artificial Ne Network (ANN). With proper mapping, size and rating of capacitive switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the switching bank can be reduced which reduces the cost and increases the life of bank as the life of ba losses are less. With the predictive series parallel combinations of UCs, switching frequency of the UC bank and heating losses can be reduced. Due to increased de green and sustainable resources of energy for power consumption, Solid Oxide Fuel Cells (SOFC) have attracted much interest of researchers and industries as an alternative power generation device due to their improved efficiency, working temperature, start-up time and environment friendly characteristics. Fuel cells generative electrical energy from chemical energy without any combustion, and hence, they have become one of the decisive technologies for production of hydrogen energy coming generations. Thus, by implementation of a thin film based SOFC along with a battery powered EV, can greatly enhance the power density and efficiency of tl electric vehicle with reduced size of power supply.
- 2. According to claim1# the invention is to a Battery and fuel cell, combined with the Ultra-Capacitors (UC), has major advantage as an electric vehicle's power sou Appropriate switching of UC bank with battery storage can provide better utilization of UCs. Switching performance of the capacitor bank can be improved by the p mapping of drive cycle using Artificial Neural Network (ANN).
- 3. According to claim1,2# the invention is to a With proper mapping, size and rating of capacitive switching bank can be reduced which reduces the cost and incre life of bank as the switching losses are less. With the predictive series parallel combinations of LICs, switching frequency of the LIC bank and heating losses can be r

View Application Status

Terms & conditions (http://ipindia.gov.in/terms-conditions.htm) Privacy Policy (http://ipindia.gov.in/privacy-policy.htm)
Copyright (http://ipindia.gov.in/copyright.htm) Hyperlinking Policy (http://ipindia.gov.in/hyperlinking-policy.htm)
Accessibility (http://ipindia.gov.in/accessibility.htm) Archive (http://ipindia.gov.in/archive.htm) Contact Us (http://ipindia.gov.in/contact-us.htm)
Help (http://ipindia.gov.in/help.htm)

 ${\bf Content\ Owned,\ updated\ and\ maintained\ by\ Intellectual\ Property\ India,\ All\ Rights\ Reserved.}$

Page last updated on: 26/06/2019